

 Navigation

 	
 index

 	
 next |

 	Gluon 2014.3 documentation

Welcome to Gluon

Gluon is a modular framework for creating OpenWrt-based firmwares for wireless mesh nodes.
Several Freifunk communities in Germany use Gluon as the foundation of their Freifunk firmwares.

User Documentation

	Getting Started

	Site
	Configuration

	Packages

	Examples

	Builds
	Building Gluon

	Cleaning up

	Environment variables

	Frequently Asked Questions

Features

	Config Mode
	Activating Config Mode

	Port Configuration

	Accessing Config Mode

	Autoupdater
	Building Images

	Infrastructure

	Command Line

	Mesh on WAN
	site.conf

	Announcing Node Information
	Format of collected data

	Accessing Node Information

	Adding a fact

Developer Documentation

	Development Basics
	Bug Tracker

	IRC

	Working with repositories

Supported Devices

	TP-Link
	TL-WR740N (v1, v3, v4)

	TL-WR741N/ND (v1, v2, v4)

	TL-WR841N/ND (v3, v5, v7, v8, v9)

	TL-WR842N/ND (v1, v2)

	TL-WR941N/ND (v2, v3, v4)

	TL-WR1043N/ND (v1)

	TL-WDR3500 (v1)

	TL-WDR3600 (v1)

	TL-WDR4300 (v1)

	TL-WA901N/ND (v2)

	TL-MR3020 (v1)

	TL-MR3040 (v1)

	TL-MR3220 (v1)

	TL-MR3420 (v1, v2)

	Ubiquiti
	Bullet M2

	Nanostation M2

	Picostation M2

	UniFi AP

	UniFi AP Outdoor

	D-Link
	DIR-615 (E1)

	DIR-825 (B1)

	Linksys
	WRT160NL

Releases

	Gluon 2014.3

License

See LICENCE [https://github.com/freifunk-gluon/gluon/blob/master/LICENSE]

Indices and tables

	Index

	Search Page

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Getting Started

To build Gluon, after checking out the repository change to the source root directory
to perform the following commands:

git clone git://github.com/freifunk-gluon/site-ffhl.git site # Get the Freifunk Lübeck site repository - or use your own!
make update # Get other repositories used by Gluon
make # Build Gluon

When calling make, the OpenWRT build environment is prepared/updated. To rebuild
the images only, just use:

make images

The built images can be found in the directory images. Of these, the factory
images are to be used when flashing from the original firmware a device came with,
and sysupgrade is to upgrade from other versions of Gluon or any other OpenWRT-based
system.

For the build reserve 6GB of disk space. The build requires packages
for subversion, ncurses headers (libncurses-dev) and zlib headers
(libz-dev).

There are two levels of make clean:

make clean

will ensure all packages are rebuilt; this is what you normally want to do after an update.

make dirclean

will clean the entire tree, so the toolchain will be rebuilt as well, which is
not necessary in most cases, and will take a while.

So all in all, to update and rebuild a Gluon build tree, the following commands should be used:

git pull
(cd site && git pull)
make update
make clean
make

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Site

The site consists of the files site.conf and site.mk.
In the first community based values are defined, which both are processed
during the build process and runtime.
The last is directly included in the make process of Gluon.

Configuration

The site.conf is a lua dictionary with the following defined keys.

	hostname_prefix

	A string which shall prefix the default hostname of a device.

	site_name

	The name of your community.

	site_code

	The code of your community. It is good practice to use the TLD of
your community here.

	prefix4

	The IPv4 Subnet of your community mesh network in CIDR notation, e.g.

prefix4 = '10.111.111.0/18'

	prefix6

	The IPv6 subnet of your community mesh network, e.g.

prefix6 = 'fdca::ffee:babe:1::/64'

	timezone

	The timezone of your community live in, e.g.

-- Europe/Berlin
timezone = 'CET-1CEST,M3.5.0,M10.5.0/3'

	ntp_server

	List of NTP servers available in your community or used by your community, e.g.:

ntp_servers = {'1.ntp.services.ffeh','2.tnp.services.ffeh'}

	opkg_repo : optional

	Overwrite the default opkg repository server, e.g.:

opkg_repo = 'http://opkg.services.ffeh/attitude_adjustment/12.09/%S/packages'

The %S is a variable, which is replaced with the platform of an device
during the build process.

	regdom

	The wireless regulatory domain responsible for your area, e.g.:

regdom = 'DE'

	wifi24

	WLAN Configuration of your community in the 2.4Ghz radio. Consisting
of ssid of your client network, the channel your community is using,
htmode, the adhoc ssid mesh_ssid used between devices, the adhoc
bssid mesh_bssid and the adhoc multicast rate mesh_mcast_rate.
Combined in an dictionary, e.g.:

wifi24 = {
 ssid = 'http://kiel.freifunk.net/',
 channel = 11,
 htmode = 'HT40-',
 mesh_ssid = 'ff:ff:ff:ee:ba:be',
 mesh_bssid = 'ff:ff:ff:ee:ba:be',
 mesh_mcast_rate = 12000,
},

	wifi5

	Same as wifi24 but for the 5Ghz radio.

	next_node : package

	Configuration of the local node feature of Gluon

next_node = {
 ip4 = '10.23.42.1',
 ip6 = 'fdca:ffee:babe:1::1',
 mac = 'ca:ff:ee:ba:be'
}

	fastd_mesh_vpn

	Remote server setup for vpn.

fastd_mesh_vpn = {
 methods = {'salsa2012+gmac'},
 mtu = 1426,
 backbone = {
 limit = 2,
 peers = {
 ffki_rz = {
 key = 'XX',
 remotes = {'ipv4 "vpn1.entenhausen.freifunk.net" port 10000'},
 },
 }
 }
}

	mesh_on_wan : optional

	Enables the mesh on the WAN port (true or false).

	autoupdater : package

	Configuration for the autoupdater feature of Gluon.

autoupdater = {
 enabled = 1,
 branch = 'experimental',
 branches = {
 stable = {
 name = 'stable',
 mirrors = {
 'http://{fdca:ffee:babe:1::fec1}/firmware/stable/sysupgrade/',
 'http://{fdca:ffee:babe:1::fec2}/firmware/stable/sysupgrade/',
 },
 probability = 0.08,
 good_signatures = 2,
 pubkeys = {
 'XX', -- someguy
 'XX', -- someother
 }
 }
 }
}

	simple_tc : package

	Uplink traffic control

simple_tc = {
 mesh_vpn = {
 ifname = 'mesh-vpn',
 enabled = false,
 limit_egress = 200,
 limit_ingress = 3000,
 },
},

	config_mode : package

	Configuration Mode text blocks

	legacy : package

	Configuration for the legacy upgrade path.
This is only required in communities upgrading from Lübeck’s LFF-0.3.x.

legacy = {
 version_files = {'/etc/.freifunk_version_keep', '/etc/.eff_version_keep'},
 old_files = {'/etc/config/config_mode', '/etc/config/ffeh', '/etc/config/freifunk'},
 config_mode_configs = {'config_mode', 'ffeh', 'freifunk'},
 fastd_configs = {'ffeh_mesh_vpn', 'mesh_vpn'},
 mesh_ifname = 'freifunk',
 tc_configs = {'ffki', 'freifunk'},
 wifi_names = {'wifi_freifunk', 'wifi_freifunk5', 'wifi_mesh', 'wifi_mesh5'},
}

Packages

The site.mk is a Makefile which should define constants
involved in the build process of Gluon.

	GLUON_SITE_PACKAGES

	Defines a list of packages which should installed additional
to the gluon_core package.

	GLUON_RELEASE

	The current release version Gluon should use.

	GLUON_PRIORITY

	The default priority for the generated manifests (see the autoupdater documentation
for more information).

Examples

An example configuration is maintained at https://github.com/freifunk-gluon/site-example.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Builds

For the build reserve 6GB of disk space. The building requires packages
for subversion, ncurses headers (libncurses-dev) and zlib headers
(libz-dev).

Building Gluon

To build Gluon, after checking out the repository change to the source root directory to perform the following commands:

git clone git://github.com/freifunk-gluon/site-ffhl.git site # Get the Freifunk Lübeck site repository - or use your own!
make update # Get other repositories used by Gluon
make # Build Gluon

When calling make, the OpenWRT build environment is prepared and updated. To rebuild
the images only, just use:

make images

The built images can be found in the directory images.

Cleaning up

There are three levels of make clean:

make clean

will only clean the Gluon-specific files;

make cleanall

will also call make clean on the OpenWRT tree, and

make dirclean

will do all this, and call make dirclean on the OpenWRT tree.

Environment variables

Gluon’s build process can be controlled by various environment variables.

	GLUON_SITEDIR

	Path to the site configuration. Defaults to site/.

	GLUON_IMAGEDIR

	Path where images will be stored. Defaults to images/.

	GLUON_BUILDDIR

	Working directory during build. Defaults to build/.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Frequently Asked Questions

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Config Mode

When in Config Mode a node will neither participate in the mesh nor connect
to the VPN using the WAN port. Instead, it’ll offer a web interface on the
LAN port to aid configuration of the node.

Whether a node is in Config Mode can be determined by a characteristic
blinking sequence of the SYS LED:

[image: ../_images/node_configmode.gif]

Activating Config Mode

Config Mode is automatically entered at the first boot. You can re-enter
Config Mode by pressing and holding the RESET/WPS button for about three
seconds. The device should reboot (all LEDs will turn of briefly) and
Config Mode will be available.

Port Configuration

In general, Config Mode will be offered on the LAN ports. However, there
are two practical exceptions:

	Devices with just one network port will run Config Mode on that port.

	Devices with PoE on the WAN port will run Config Mode on the WAN port instead.

Accessing Config Mode

Config Mode can be accessed at http://192.168.1.1. The node will offer DHCP
to clients. Should this fail, you may assign an IP from 192.168.1.0/24 to
your computer manually.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Autoupdater

Gluon contains an automatic update system which can be configured in the site configuration.

Building Images

By default, the autoupdater is disabled (as it is usually not helpful to have unexpected updates
during development), but it can be enabled by setting the variable GLUON_BRANCH when building
to override the default branch set in the set in the site configuration.

A manifest file for the updater can be generated with make manifest. A signing script (using
ecdsautils) can by found in the contrib directory. When creating the manifest, GLUON_PRIORITY can
be set on the command line, or it can be taken from the site.mk.

The priority defines the maximum number of days that may pass between releasing an update and installation
of the images. The update probability with start at 0 after the release time mentioned in the manifest
and then slowly rise to 1 after the number of days given by the priority has passed.

The priority may be an integer or a decimal fraction.

A fully automated nightly build could use the following commands:

git pull
(cd site && git pull)
make update
make clean
make -j5 GLUON_BRANCH=experimental
make manifest GLUON_BRANCH=experimental
contrib/sign.sh $SECRETKEY images/sysupgrade/experimental.manifest

rm -rf /where/to/put/this/experimental
cp -r images /where/to/put/this/experimental
ln -s experimental.manifest /where/to/put/this/experimental/sysupgrade/manifest

Infrastructure

We suggest to have following directory tree accessible via http:

firmware/
 stable/
 sysupgrade/
 factory/
 snapshot/
 sysupgrade/
 factory/
 experimental/
 sysupgrade/
 factory/

The last level is generated by the Gluon build process. Do not forget
to create symlinks from manifest to <branch>.manifest in the
sysupgrade directories to allow upgrades from Gluon versions before 2014.3.

The server should be available via IPv6.

Command Line

These commands can be used on a node.

Update with some probability
autoupdate

Force update check, even when the updater is disabled
autoupdater -f

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Mesh on WAN

It’s possible to enable the mesh on the WAN port like this:

::
uci set network.mesh_wan.auto=1
uci commit

It may also be disabled again by running:

::
uci set network.mesh_wan.auto=0
uci commit

site.conf

The optional option mesh_on_wan may be set to true (false is the
default) to enable meshing on the WAN port without further configuration.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Announcing Node Information

Gluon is capable of announcing information about each node to the mesh
and to neighbouring nodes. This allows nodes to learn each others hostname,
IP addresses, location, software versions and various other information.

Format of collected data

Information to be announced is currently split into two categories:

	nodeinfo

	In this category (mostly) static information is collected. If
something is unlikely to change without human intervention it should be
put here.

	statistics

	This category holds fast changing data, like traffic counters, uptime,
system load or the selected gateway.

Both categories will have a node_id key be default. It should be used to
match data from statistics to nodeinfo.

Accessing Node Information

There are two packages responsible for distribution of the information. For
one, information is distributed across the mesh using alfred [http://www.open-mesh.org/projects/alfred]. Information
between neighbouring nodes is exchanged using gluon-announced.

alfred (mesh bound)

The package gluon-alfred is required for this to work.

Using alfred both categories are distributed within the mesh. In order to
retrieve the data you’ll need both a local alfred daemon and alfred-json [https://github.com/tcatm/alfred-json]
installed. Please note that at least one alfred daemon is required to run as
master.

nodeinfo is distributed as alfred datatype 158, while statistics uses
159. Both are compressed using GZip (alfred-json can handle the decompression).

In order to retrieve statistics data you could run:

alfred-json -z -r 159
{
 "f8:d1:11:7e:97:dc": {
 "processes": {
 "total": 55,
 "running": 2
 },
 "idletime": 30632.290000000001,
 "uptime": 33200.07,
 "memory": {
 "free": 1660,
 "cached": 8268,
 "total": 29212,
 "buffers": 2236
 },
 "node_id": "f8d1117e97dc",
 "loadavg": 0.01
 },
 "90:f6:52:3e:b9:50": {
 "processes": {
 "total": 58,
 "running": 2
 },
 "idletime": 28047.470000000001,
 "uptime": 33307.849999999999,
 "memory": {
 "free": 2364,
 "cached": 7168,
 "total": 29212,
 "buffers": 1952
 },
 "node_id": "90f6523eb950",
 "loadavg": 0.34000000000000002
 }
}

You can find more information about alfred in its README [http://www.open-mesh.org/projects/alfred/repository/revisions/master/entry/README].

gluon-announced

gluon-announced allows querying neighbouring nodes for their nodeinfo.
It is a daemon listening on the multicast address ff02::2:1001 on
UDP port 1001 on the bare mesh interfaces. There is no client yet (but it’s
being developed), but you can query the information using tools like socat:

socat - UDP6-DATAGRAM:[ff02::2:1001%wlan0-1]:1001
nodeinfo

This output is not compressed, but that is likely to change in the future. If
you intent to use gluon-announced, please contact tcatm in Gluon’s IRC
channel.

Adding a fact

To add a fact just add a file to either /lib/gluon/announce/nodeinfo.d/ or
/lib/gluon/announce/statistics.d/.

The file must contain a lua script and its name will become the key for the
resulting JSON object. A simple script adding a hostname field might look
like this:

return uci:get_first('system', 'system', 'hostname')

The directory structure will be converted to a JSON object, i.e. you may
create subdirectories. So, if the directories look like this

.
├── hardware
│ └── model
├── hostname
├── network
│ └── mac
├── node_id
└── software
 └── firmware

the resulting JSON would become:

/lib/gluon/announce/announce.lua nodeinfo
{
 "hardware" : {
 "model" : "TP-Link TL-MR3420 v1"
 },
 "hostname" : "mr3420-test",
 "network" : {
 "mac" : "90:f6:52:82:06:02"
 },
 "node_id" : "90f652820602",
 "software" : {
 "firmware" : {
 "base" : "gluon-v2014.2-32-ge831099",
 "release" : "0.4.1+0-exp20140720"
 }
 }
}

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Development Basics

Gluon’s source is kept in git repositories [https://github.com/freifunk-gluon] at GitHub.

Bug Tracker

The main repo [https://github.com/freifunk-gluon/gluon] does have issues enabled.

IRC

Gluon’s developers frequent #gluon on hackint. You’re welcome to join us!

Working with repositories

To update the repositories used by Gluon, just adjust the commit IDs in modules and
rerun

make update

make update also applies the patches that can be found in the directories found in
patches; the resulting branch will be called patched, while the commit specified in modules
can be refered to by the branch base.

make unpatch

sets the repositories to the base branch,

make patch

re-applies the patches by resetting the patched branch to base and calling git am
for the patch files. Calling make or a similar command after calling make unpatch
is generally not a good idea.

After new patches have been commited on top of the patched branch (or existing commits
since the base commit have been edited or removed), the patch directories can be regenerated
using

make update-patches

If applying a patch fails because you have changed the base commit, the repository will be reset to the old patched branch
and you can try rebasing it onto the new base branch yourself and after that call make update-patches to fix the problem.

Always call make update-patches after making changes to a module repository as make update will overwrite your
commits, making git reflog the only way to recover them!

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Gluon 2014.3 documentation

Gluon 2014.3

New hardware support

	Linksys WRT160NL

New features

New autoupdater

The autoupdater has been rewritten.

Two new fields have been added to the manifest:

	DATE

	Specifies the time and date the update was released. make manifest will take care of setting it to the correct value.

	PRIORITY

	Specifies the maximum number of days until the update should be attempted (thus lower numbers
mean the priority is higher). It must be set either in site.mk or on the make manifest command line.

Updates will be attempted at night, between 04:00 and 5:00, with a specific probability.
When less than PRIORITY days have passed (calculated using DATE and the current time),
the probability will proportional to the time passed. I.e. the update probability will start at 0
and slowly increase to 1 until PRIORITY days have passed. From then, the probability will be fixed at 1.

Note: For the new update logic to work, a valid NTP server reachable over the mesh (using IPv6) must
be configured in site.mk. If the autoupdater is unable to determine the correct time, it will fall back to
a behavior similar to the old implementation (i.e. hourly update attempts).

Seperation of announced data

The data announced by alfred has been split into two data types:

	nodeinfo (type 158) contains all static information about a node

	statistics (type 159) contains all dynamic information about a node

Both types also contain a new field node_id which contains an arbitrary unique ID
(currently the primary MAC address, sans colons) which can be used to match the nodeinfo
with statistics information.

gluon-announced

A new daemon has been added in a new package gluon-announced. This daemon can be
used for querying the nodeinfo data of a node via link-local multicast on the ad-hoc
interfaces.

At the moment, this daemon is not used, but we recommend including it in site.mk nevertheless
as we plan to implement a new status page showing some information about neighbor nodes in
the next version of Gluon.

VPN over IPv6

It is now possible to use fastd in IPv6 WAN networks. This still needs testing, but it should work well.

Please note that the MTU of 1426 used by many communities for VPN over IPv4 is too big for IPv6 as
the IPv6 header is 20 bytes longer (fastd over IPv4 has an overhead of 66 bytes,
fastd over IPv6 has an overhead of 86 bytes).

More modular Config Mode

The package gluon-config-mode has been split into multiple packages to simplify the development of
extensions. The low-level logic (handling of the button, starting the services for the config mode) has been moved
into a new package gluon-setup-mode, while gluon-config-mode only contains the frontend now.

Extended Expert Mode

The Expert Mode now has a nice info page. In addition, the new package gluon-luci-portconfig has been added
which allows simple configuration of batman-adv on the WAN interface.

Site validators

The content of the site.conf is now validated when the images are built to make it less likely to accidentially
build broken images.

gluon-firewall

The package gluon-firewall has been removed. Its features are now part of the packages gluon-core and
gluon-mesh-batman-adv.

gluon-ath9k-workaround

This package installs a cron job which tries to recognize ath9k hangs and restart the WLAN while recording some information.
It is very rudimentary and we can’t really recommend using it on “production” nodes.

Bugfixes

Improved ath9k stability

Multiple bugs in the WLAN driver ath9k have been fixed upstream. This should greatly improve the WLAN stability.

odhcp6c 50 day bug

An important update for odhcp6c fixes a bug which caused Gluon nodes to lose their IPv6 addresses on br-client after an uptime
of 50 days, making the nodes unable perform automated updates (besides other issues).

IPv6 preference

Commands like wget now prefer IPv6 for domains with both AAAA and A records, allowing to use such domains for the autoupdater URLs
and as NTP servers in site.conf.

Site changes

	site.conf
	The probability fields for the autoupdater branches can be dropped as they aren’t used anymore

	The type of the enabled options of the gluon-simple-tc configuration has been changed to boolean, so true and false must be used instead of 1 and 0 now

	site.mk
	Obsolete packages:
	gluon-firewall

	Recommended new packages:
	gluon-announced

	gluon-luci-portconfig

	GLUON_PRIORITY must be set in site.mk or on the make manifest commandline. Use GLUON_PRIORITY ?= 0 in site.mk to allow overriding from the commandline.

Internals

Some internal changes not mentioned before which are interesting for developers:

	Many more shell scripts have been converted to Lua

	gluon-mesh-vpn-fastd now uses the new package gluon-wan-dnsmasq, which provides a secondary DNS server on port 54
that is only reachable from localhost and uses the DNS servers on the WAN interface for everything. This allowed us to
remove some ugly hacks which were making the DNS servers used depend on the domain being resolved.

For IPv6, the default route is now controlled via packet marks, so the secondary DNS server and fastd set the packet mark
so they use the default route provided on the WAN interface instead of the mesh.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Gluon 2014.3 documentation

Index

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_images/node_configmode.gif
PWRsYs wan O 4B wan Uss ass

Wireless N Gigabit Router TL-WR1043ND

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Gluon 2014.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

