

 Navigation

 	
 index

 	
 next |

 	Gluon 2014.3 documentation

Welcome to Gluon

Gluon is a modular framework for creating OpenWrt-based firmwares for wireless mesh nodes.
Several Freifunk communities in Germany use Gluon as the foundation of their Freifunk firmwares.

User Documentation

	Getting Started
	Selecting the right version

	Building the image

	Environment variables

	Site
	Configuration

	Packages

	Examples

	Frequently Asked Questions

Features

	Config Mode
	Activating Config Mode

	Port Configuration

	Accessing Config Mode

	Autoupdater
	Building Images

	Infrastructure

	Command Line

	Private WLAN

	Mesh on WAN
	site.conf

	Announcing Node Information
	Format of collected data

	Accessing Node Information

	Adding a fact

	Adding SSH public keys

Developer Documentation

	Development Basics
	Bug Tracker

	IRC

	Working with repositories

	Adding support for new hardware
	Hardware requirements

	Adding profiles

	Adding support for new hardware targets

	Config Mode
	Writing Config Mode Modules

Supported Devices

	Buffalo
	WZR-HP-AG300H / WZR-600DHP

	WZR-HP-G450H

	D-Link
	DIR-825 (B1)

	Linksys
	WRT160NL

	TP-Link
	CPE210 (v1)

	CPE220 (v1)

	CPE510 (v1)

	CPE520 (v1)

	TL-MR3020 (v1)

	TL-MR3040 (v1, v2)

	TL-MR3220 (v1)

	TL-MR3420 (v1, v2)

	TL-WA750RE (v1)

	TL-WA801N/ND (v2)

	TL-WA850RE (v1)

	TL-WA901N/ND (v2)

	TL-WDR3500 (v1)

	TL-WDR3600 (v1)

	TL-WDR4300 (v1)

	TL-WR1043N/ND (v1, v2)

	TL-WR703N (v1)

	TL-WR710N (v1)

	TL-WR740N (v1, v3, v4)

	TL-WR741N/ND (v1, v2, v4)

	TL-WR841N/ND (v3, v5, v7, v8, v9)

	TL-WR842N/ND (v1, v2)

	TL-WR941N/ND (v2, v3, v4)

	Ubiquiti
	Bullet M2

	Nanostation M2

	Picostation M2

	UniFi AP

	UniFi AP Outdoor

Releases

	Gluon 2014.4

	Gluon 2014.3.1

	Gluon 2014.3

License

See LICENCE [https://github.com/freifunk-gluon/gluon/blob/master/LICENSE]

Indices and tables

	Index

	Search Page

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Getting Started

Selecting the right version

Gluon’s releases are managed using Git tags [http://git-scm.com/book/en/Git-Basics-Tagging]. If you’re a community getting
started with Gluon we recommend to use the latest stable release if Gluon.

Take a look at the list of gluon releases [https://github.com/freifunk-gluon/gluon/releases] and notice the latest release,
e.g. v2014.3.

Please keep in mind that a matching site configuration for your community
is required. Due to new features being added (or sometimes being removed)
the format of the site configuration changes slightly between releases.

Recent releases (starting with v2014.3.1) will come with an example
configuration located in docs/site-example/.

Building the image

Note

Make sure you have configured your Git identity [http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup#Your-Identity].
If you neglect this, you’ll get strange error messages.

To build Gluon, first check out the repository. Replace RELEASE with the
version you’d like to checkout, e.g. v2014.3.

git clone https://github.com/freifunk-gluon/gluon.git gluon -b RELEASE

This command will create a directory named gluon/.
It might also tell a scary message about being in a detached state.
Don’t panic! Everything’s fine.
Now, enter the freshly created directory:

cd gluon

It’s time to add (or create) your site configuration.
So let’s create the directory site/:

mkdir site
cd site

Copy site.conf and site.mk from docs/site-example:

cp ../docs/site-example/site.conf .
cp ../docs/site-example/site.mk .

Note

On v2014.3, take both files from
https://github.com/freifunk-gluon/gluon/tree/2014.3.x/docs/site-example

Edit both files to match your community, then go back to the top-level Gluon
directory and build Gluon:

cd ..
make update # Get other repositories used by Gluon
make # Build Gluon

When calling make, the OpenWRT build environment is prepared/updated.
In case of errors read the messages carefully and try to fix the stated issues (e.g. install tools not available yet).
To rebuild the images only, just use:

make images

The built images can be found in the directory images. Of these, the factory
images are to be used when flashing from the original firmware a device came with,
and sysupgrade is to upgrade from other versions of Gluon or any other OpenWRT-based
system.

For the build reserve 6GB of disk space. The build requires packages
for subversion, ncurses headers (libncurses-dev) and zlib headers
(libz-dev).

There are two levels of make clean:

make clean

will ensure all packages are rebuilt; this is what you normally want to do after an update.

make dirclean

will clean the entire tree, so the toolchain will be rebuilt as well, which is
not necessary in most cases, and will take a while.

Environment variables

Gluon’s build process can be controlled by various environment variables.

	GLUON_SITEDIR

	Path to the site configuration. Defaults to site/.

	GLUON_IMAGEDIR

	Path where images will be stored. Defaults to images/.

	GLUON_BUILDDIR

	Working directory during build. Defaults to build/.

So all in all, to update and rebuild a Gluon build tree, the following commands should be used:

git pull
(cd site && git pull)
make update
make clean
make

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Site

The site consists of the files site.conf and site.mk.
In the first community based values are defined, which both are processed
during the build process and runtime.
The last is directly included in the make process of Gluon.

Configuration

The site.conf is a lua dictionary with the following defined keys.

	hostname_prefix

	A string which shall prefix the default hostname of a device.

	site_name

	The name of your community.

	site_code

	The code of your community. It is good practice to use the TLD of
your community here.

	prefix4

	The IPv4 Subnet of your community mesh network in CIDR notation, e.g.

prefix4 = '10.111.111.0/18'

	prefix6

	The IPv6 subnet of your community mesh network, e.g.

prefix6 = 'fdca::ffee:babe:1::/64'

	timezone

	The timezone of your community live in, e.g.

-- Europe/Berlin
timezone = 'CET-1CEST,M3.5.0,M10.5.0/3'

	ntp_server

	List of NTP servers available in your community or used by your community, e.g.:

ntp_servers = {'1.ntp.services.ffeh','2.tnp.services.ffeh'}

	opkg_repo : optional

	Overwrite the default opkg repository server, e.g.:

opkg_repo = 'http://opkg.services.ffeh/attitude_adjustment/12.09/%S/packages'

The %S is a variable, which is replaced with the platform of an device
during the build process.

	regdom

	The wireless regulatory domain responsible for your area, e.g.:

regdom = 'DE'

	wifi24

	WLAN Configuration of your community in the 2.4Ghz radio. Consisting
of ssid of your client network, the channel your community is using,
htmode, the adhoc ssid mesh_ssid used between devices, the adhoc
bssid mesh_bssid and the adhoc multicast rate mesh_mcast_rate.
Combined in an dictionary, e.g.:

wifi24 = {
 ssid = 'http://kiel.freifunk.net/',
 channel = 11,
 htmode = 'HT40-',
 mesh_ssid = 'ff:ff:ff:ee:ba:be',
 mesh_bssid = 'ff:ff:ff:ee:ba:be',
 mesh_mcast_rate = 12000,
},

	wifi5

	Same as wifi24 but for the 5Ghz radio.

	next_node : package

	Configuration of the local node feature of Gluon

next_node = {
 ip4 = '10.23.42.1',
 ip6 = 'fdca:ffee:babe:1::1',
 mac = 'ca:ff:ee:ba:be'
}

	fastd_mesh_vpn

	Remote server setup for vpn.

fastd_mesh_vpn = {
 methods = {'salsa2012+gmac'},
 mtu = 1426,
 backbone = {
 limit = 2,
 peers = {
 ffki_rz = {
 key = 'XX',
 remotes = {'ipv4 "vpn1.entenhausen.freifunk.net" port 10000'},
 },
 }
 }
}

	mesh_on_wan : optional

	Enables the mesh on the WAN port (true or false).

	autoupdater : package

	Configuration for the autoupdater feature of Gluon.

autoupdater = {
 enabled = 1,
 branch = 'experimental',
 branches = {
 stable = {
 name = 'stable',
 mirrors = {
 'http://{fdca:ffee:babe:1::fec1}/firmware/stable/sysupgrade/',
 'http://{fdca:ffee:babe:1::fec2}/firmware/stable/sysupgrade/',
 },
 probability = 0.08,
 good_signatures = 2,
 pubkeys = {
 'XX', -- someguy
 'XX', -- someother
 }
 }
 }
}

	simple_tc : package

	Uplink traffic control

simple_tc = {
 mesh_vpn = {
 ifname = 'mesh-vpn',
 enabled = false,
 limit_egress = 200,
 limit_ingress = 3000,
 },
},

	config_mode : package

	Configuration Mode text blocks

	legacy : package

	Configuration for the legacy upgrade path.
This is only required in communities upgrading from Lübeck’s LFF-0.3.x.

legacy = {
 version_files = {'/etc/.freifunk_version_keep', '/etc/.eff_version_keep'},
 old_files = {'/etc/config/config_mode', '/etc/config/ffeh', '/etc/config/freifunk'},
 config_mode_configs = {'config_mode', 'ffeh', 'freifunk'},
 fastd_configs = {'ffeh_mesh_vpn', 'mesh_vpn'},
 mesh_ifname = 'freifunk',
 tc_configs = {'ffki', 'freifunk'},
 wifi_names = {'wifi_freifunk', 'wifi_freifunk5', 'wifi_mesh', 'wifi_mesh5'},
}

Packages

The site.mk is a Makefile which should define constants
involved in the build process of Gluon.

	GLUON_SITE_PACKAGES

	Defines a list of packages which should installed additional
to the gluon_core package.

	GLUON_RELEASE

	The current release version Gluon should use.

	GLUON_PRIORITY

	The default priority for the generated manifests (see the autoupdater documentation
for more information).

Examples

site.mk

##	gluon site.mk makefile example

##	GLUON_SITE_PACKAGES
#		specify gluon/openwrt packages to include here
#		The gluon-mesh-batman-adv-* package must come first because of the dependency resolution

GLUON_SITE_PACKAGES := \
	gluon-mesh-batman-adv-14 \
	gluon-alfred \
	gluon-announced \
	gluon-autoupdater \
	gluon-config-mode-hostname \
	gluon-config-mode-autoupdater \
	gluon-config-mode-mesh-vpn \
	gluon-config-mode-geo-location \
	gluon-config-mode-contact-info \
	gluon-ebtables-filter-multicast \
	gluon-ebtables-filter-ra-dhcp \
	gluon-luci-admin \
	gluon-luci-autoupdater \
	gluon-luci-portconfig \
	gluon-next-node \
	gluon-mesh-vpn-fastd \
	gluon-radvd \
	gluon-status-page \
	iwinfo \
	iptables \
	haveged

##	DEFAULT_GLUON_RELEASE
#		version string to use for images
#		gluon relies on
#			opkg compare-versions "$1" '>>' "$2"
#		to decide if a version is newer or not.

DEFAULT_GLUON_RELEASE := 0.4+0-exp$(shell date '+%Y%m%d')

##	GLUON_RELEASE
#		call make with custom GLUON_RELEASE flag, to use your own release version scheme.
#		e.g.:
#			$ make images GLUON_RELEASE=23.42+5
#		would generate images named like this:
#			gluon-ff%site_code%-23.42+5-%router_model%.bin

Allow overriding the release number from the command line
GLUON_RELEASE ?= $(DEFAULT_GLUON_RELEASE)

Default priority for updates.
GLUON_PRIORITY ?= 0

site.conf

-- This is an example site configuration for Gluon v2014.4
--
-- Take a look at the documentation located at
-- http://gluon.readthedocs.org/ for details.
--
-- This configuration will not work as it. You're required to make
-- community specific changes to it!
{
 -- Used for generated hostnames, e.g. freifunk-abcdef123456.
 hostname_prefix = 'freifunk',

 -- Name of the community.
 site_name = 'Freifunk Lübeck',

 -- Shorthand of the community.
 site_code = 'ffhl',

 -- Prefixes used within the mesh. Both are required.
 prefix4 = '10.130.0.0/20',
 prefix6 = 'fdef:ffc0:3dd7::/64',

 -- Timezone of your community.
 -- See http://wiki.openwrt.org/doc/uci/system#time_zones
 timezone = 'CET-1CEST,M3.5.0,M10.5.0/3',

 -- List of NTP servers in your community.
 -- Must be reachable using IPv6!
 ntp_servers = {'1.ntp.services.ffhl'},

 -- Wireless regulatory domain of your community.
 regdom = 'DE',

 -- Wireless configuratoin for 2.4 GHz interfaces.
 wifi24 = {
 -- Wireless channel.
 channel = 1,

 -- ESSID used for client network.
 ssid = 'luebeck.freifunk.net',

 -- Specifies the channel width in 802.11n and 802.11ac mode.
 -- Possible values are:
 -- HT20 (single 20MHz channel),
 -- HT40- (2x 20MHz channels, secondary below)
 -- HT40+ (2x 20MHz channels, secondary above)
 htmode = 'HT20',

 -- Adjust these values!
 mesh_ssid = 'XX:XX:XX:XX:XX:XX', -- ESSID used for mesh
 mesh_bssid = 'XX:XX:XX:XX:XX:XX', -- BSSID used for mesh

 -- Bitrate used for multicast/broadcast packets.
 mesh_mcast_rate = 12000,
 },

 -- Wireless configuration for 5 GHz interfaces.
 -- This should be equal to the 2.4 GHz variant, except
 -- for channel and htmode.
 wifi5 = {
 ssid = 'luebeck.freifunk.net',
 channel = 44,
 htmode = 'HT20',
 mesh_ssid = 'XX:XX:XX:XX:XX:XX',
 mesh_bssid = 'XX:XX:XX:XX:XX:XX',
 mesh_mcast_rate = 12000,
 },

 -- The next node feature allows clients to always reach the node it is
 -- connected to using a known IP address.
 next_node = {
 -- anycast IPs of all nodes
 ip4 = '10.130.0.1',
 ip6 = 'fdef:ffc0:3dd7::1',

 -- anycast MAC of all nodes
 mac = '16:41:95:40:f7:dc',
 },

 -- Refer to http://fastd.readthedocs.org/en/latest/ to better understand
 -- what these options do.
 fastd_mesh_vpn = {
 -- List of crypto-methods to use.
 methods = {'salsa2012+gmac'},
 mtu = 1426,
 backbone = {
 -- Limit number of connected peers to reduce bandwidth.
 limit = 2,

 -- List of peers.
 peers = {
 burgtor = {
 key = '657af03e36ff1b8bbe5a5134982a4f110c8523a9a63293870caf548916a95a03',

 -- This is a list, so you might add multiple entries.
 remotes = {'ipv4 "burgtor.mesh.ffhl.chaotikum.org" port 10000'},
 },
 holstentor = {
 key = '8c660f7511bf101ea1b599fe53af20e1146cd923c9e9d2a3a0d534ee75af9067',
 remotes = {'ipv4 "holstentor.mesh.ffhl.chaotikum.org" port 10000'},
 },
 },
 },
 },

 autoupdater = {
 -- Default branch. Don't forget to set GLUON_BRANCH when building!
 branch = 'stable',

 -- List of branches. You may define multiple branches.
 branches = {
 stable = {
 name = 'stable',

 -- List of mirrors to fetch images from. IPv6 required!
 mirrors = {'http://1.updates.services.ffhl/stable/sysupgrade'},

 -- Number of good signatures required.
 -- Have multiple maintainers sign your build and only
 -- accept it when a sufficient number of them have
 -- signed it.
 good_signatures = 2,

 -- List of public keys of maintainers.
 pubkeys = {
 'daa19b44bbd7033965e02088127bad9516ba0fea8f34267a777144a23ec8900c', -- Linus
 'a8dd60765b07330a4bbfdf8406102befca132881a4b65f3efda32cf2d5b362d9', -- Nils
 '323bd3285c4e5547a89cd6da1f2aef67f1654b0928bbd5b104efc9dab2156d0b', -- NeoRaider
 },
 },
 },
 },

 -- Bandwidth limiting
 simple_tc = {
 mesh_vpn = {
 ifname = 'mesh-vpn',

 -- You may enable it by default here.
 enabled = false,

 -- Default upload limit (kbit/s).
 limit_egress = 200,

 -- Default download limit (kbit/s).
 limit_ingress = 3000,
 },
 },

 -- These strings are shown in config mode. Some HTML is permissible.
 --
 -- msg_welcome: shown at startup
 -- msg_pubkey: shown when VPN is enabled
 -- msg_reboot: shown during reboot (after finishing configuration)
 --
 -- You may use some variables, e.g.:
 --
 -- <%=hostname%> - the node's hostname
 -- <%=pubkey%> - the fastd public key
 -- <%=sysconfig.primary_mac%> - the node's primary MAC
 config_mode = {
 msg_welcome = [[
Willkommen zum Einrichtungsassistenten für deinen neuen Lübecker
Freifunk-Knoten. Fülle das folgende Formular deinen Vorstellungen
entsprechend aus und sende es ab.
]],
 msg_pubkey = [[
Dies ist der öffentliche Schlüssel deines Freifunk-Knotens. Erst nachdem
er auf den Servern des Lübecker Freifunk-Projektes eingetragen wurde,
kann sich dein Knoten mit dem Lübecker Mesh-VPN zu verbinden. Bitte
schicke dazu diesen Schlüssel und den Namen deines Knotens
(<%=hostname%>) an
keys@luebeck.freifunk.net.
]],
 msg_reboot = [[
<p>
Dein Knoten startet gerade neu und wird anschließend versuchen,
sich anschließend mit anderen Freifunk-Knoten in seiner Nähe zu
verbinden. Weitere Informationen zur
Lübecker Freifunk-Community findest du auf
unserer Webseite.
</p>
<p>
Viel Spaß mit deinem Knoten und der Erkundung von Freifunk!
</p>
]],
 },
}

modules

This file allows specifying additional repositories to use
when building gluon.
#
In most cases, it is not required so don't add it.

##	GLUON_SITE_FEEDS
#		for each feed name given, add the corresponding PACKAGES_* lines
#		documented below
#GLUON_SITE_FEEDS='my_own_packages'

##	PACKAGES_$feedname_REPO
#		the git repository from where to clone the package feed
#PACKAGES_MY_OWN_PACKAGES_REPO=https://github.com/.../my-own-packages.git

##	PACKAGES_$feedname_COMMIT
#		the version/commit of the git repository to clone
#PACKAGES_MY_OWN_PACKAGES_COMMIT=123456789aabcda1a69b04278e4d38f2a3f57e49

PACKAGES_$feedname_BRANCH
the branch to check out
#PACKAGES_MY_OWN_PACKAGES_BRANCH=my_branch

site-repos in the wild

This is a non-exhaustive list of site-repos from various communities:

	site-ffbs [https://github.com/ffbs/site-ffbs] (Braunschweig)

	site-ffhb [https://github.com/FreifunkBremen/gluon-site-ffhb] (Bremen)

	site-ffda [https://github.com/freifunk-darmstadt/site-ffda] (Darmstadt)

	site-ffhh [https://github.com/freifunkhamburg/site-ffhh] (Hamburg)

	site-ffhgw [https://github.com/lorenzo-greifswald/site-ffhgw] (Greifswald)

	site-ffhl [https://github.com/freifunk-gluon/site-ffhl] (Lübeck)

	site-ffmd [https://github.com/FreifunkMD/site-ffmd] (Magdeburg)

	site-ffmz [https://github.com/freifunk-mwu/site-ffmz] (Mainz, Wiesbaden & Umgebung)

	site-ffm [https://github.com/freifunkMUC/site-ffm] (München)

	site-ffms [https://github.com/FreiFunkMuenster/site-ffms] (Münster)

	site-ffnw [https://git.freifunk-ol.de/root/siteconf.git] (Nordwest)

	site-ffpb [https://git.c3pb.de/freifunk-pb/site-ffpb] (Paderborn)

	site-ffka [https://github.com/ffka/site-ffka] (Karlsruhe)

	site-ffrl [https://github.com/ffrl/sites-ffrl] (Rheinland)

	site-ffrg [https://github.com/ffruhr/site-ffruhr] (Ruhrgebiet)

	site-ffs [https://github.com/freifunk-stuttgart/site-ffs] (Stuttgart)

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Frequently Asked Questions

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Config Mode

When in Config Mode a node will neither participate in the mesh nor connect
to the VPN using the WAN port. Instead, it’ll offer a web interface on the
LAN port to aid configuration of the node.

Whether a node is in Config Mode can be determined by a characteristic
blinking sequence of the SYS LED:

[image: ../_images/node_configmode.gif]

Activating Config Mode

Config Mode is automatically entered at the first boot. You can re-enter
Config Mode by pressing and holding the RESET/WPS button for about three
seconds. The device should reboot (all LEDs will turn of briefly) and
Config Mode will be available.

Port Configuration

In general, Config Mode will be offered on the LAN ports. However, there
are two practical exceptions:

	Devices with just one network port will run Config Mode on that port.

	Devices with PoE on the WAN port will run Config Mode on the WAN port instead.

Accessing Config Mode

Config Mode can be accessed at http://192.168.1.1. The node will offer DHCP
to clients. Should this fail, you may assign an IP from 192.168.1.0/24 to
your computer manually.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Autoupdater

Gluon contains an automatic update system which can be configured in the site configuration.

Building Images

By default, the autoupdater is disabled (as it is usually not helpful to have unexpected updates
during development), but it can be enabled by setting the variable GLUON_BRANCH when building
to override the default branch set in the set in the site configuration.

A manifest file for the updater can be generated with make manifest. A signing script (using
ecdsautils) can by found in the contrib directory. When creating the manifest, GLUON_PRIORITY can
be set on the command line, or it can be taken from the site.mk.

The priority defines the maximum number of days that may pass between releasing an update and installation
of the images. The update probability with start at 0 after the release time mentioned in the manifest
and then slowly rise to 1 after the number of days given by the priority has passed.

The priority may be an integer or a decimal fraction.

A fully automated nightly build could use the following commands:

git pull
(cd site && git pull)
make update
make clean
make -j5 GLUON_BRANCH=experimental
make manifest GLUON_BRANCH=experimental
contrib/sign.sh $SECRETKEY images/sysupgrade/experimental.manifest

rm -rf /where/to/put/this/experimental
cp -r images /where/to/put/this/experimental
ln -s experimental.manifest /where/to/put/this/experimental/sysupgrade/manifest

Infrastructure

We suggest to have following directory tree accessible via http:

firmware/
 stable/
 sysupgrade/
 factory/
 snapshot/
 sysupgrade/
 factory/
 experimental/
 sysupgrade/
 factory/

The last level is generated by the Gluon build process. Do not forget
to create symlinks from manifest to <branch>.manifest in the
sysupgrade directories to allow upgrades from Gluon versions before 2014.3.

The server should be available via IPv6.

Command Line

These commands can be used on a node.

Update with some probability
autoupdater

Force update check, even when the updater is disabled
autoupdater -f

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Private WLAN

It is possible to set up a private WLAN that bridges the WAN port and is seperated from the mesh network.
Please note that you should not enable mesh_on_wan simultaneously.

The private WLAN can be enabled through the config mode if the package gluon-luci-private-wifi is installed.
You may also enable a private WLAN using the command line:

uci set wireless.wan_radio0=wifi-iface
uci set wireless.wan_radio0.device=radio0
uci set wireless.wan_radio0.network=wan
uci set wireless.wan_radio0.mode=ap
uci set wireless.wan_radio0.encryption=psk2
uci set wireless.wan_radio0.ssid="$SSID"
uci set wireless.wan_radio0.key="$KEY"
uci set wireless.wan_radio0.disabled=0
uci commit
wifi

Please replace $SSID by the name of the WLAN and $KEY by your passphrase (8-63 characters).
If you have two radios (e.g. 2.4 and 5 GHz) you need to do this for radio0 and radio1.

It may also be disabled by running:

uci set wireless.wan_radio0.disabled=1
uci commit
wifi

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Mesh on WAN

It’s possible to enable the mesh on the WAN port like this:

uci set network.mesh_wan.auto=1
uci commit

It may also be disabled again by running:

uci set network.mesh_wan.auto=0
uci commit

site.conf

The optional option mesh_on_wan may be set to true (false is the
default) to enable meshing on the WAN port without further configuration.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Announcing Node Information

Gluon is capable of announcing information about each node to the mesh
and to neighbouring nodes. This allows nodes to learn each others hostname,
IP addresses, location, software versions and various other information.

Format of collected data

Information to be announced is currently split into two categories:

	nodeinfo

	In this category (mostly) static information is collected. If
something is unlikely to change without human intervention it should be
put here.

	statistics

	This category holds fast changing data, like traffic counters, uptime,
system load or the selected gateway.

Both categories will have a node_id key be default. It should be used to
match data from statistics to nodeinfo.

Accessing Node Information

There are two packages responsible for distribution of the information. For
one, information is distributed across the mesh using alfred [http://www.open-mesh.org/projects/alfred]. Information
between neighbouring nodes is exchanged using gluon-announced.

alfred (mesh bound)

The package gluon-alfred is required for this to work.

Using alfred both categories are distributed within the mesh. In order to
retrieve the data you’ll need both a local alfred daemon and alfred-json [https://github.com/tcatm/alfred-json]
installed. Please note that at least one alfred daemon is required to run as
master.

nodeinfo is distributed as alfred datatype 158, while statistics uses
159. Both are compressed using GZip (alfred-json can handle the decompression).

In order to retrieve statistics data you could run:

alfred-json -z -r 159
{
 "f8:d1:11:7e:97:dc": {
 "processes": {
 "total": 55,
 "running": 2
 },
 "idletime": 30632.290000000001,
 "uptime": 33200.07,
 "memory": {
 "free": 1660,
 "cached": 8268,
 "total": 29212,
 "buffers": 2236
 },
 "node_id": "f8d1117e97dc",
 "loadavg": 0.01
 },
 "90:f6:52:3e:b9:50": {
 "processes": {
 "total": 58,
 "running": 2
 },
 "idletime": 28047.470000000001,
 "uptime": 33307.849999999999,
 "memory": {
 "free": 2364,
 "cached": 7168,
 "total": 29212,
 "buffers": 1952
 },
 "node_id": "90f6523eb950",
 "loadavg": 0.34000000000000002
 }
}

You can find more information about alfred in its README [http://www.open-mesh.org/projects/alfred/repository/revisions/master/entry/README].

gluon-announced

gluon-announced allows querying neighbouring nodes for their nodeinfo.
It is a daemon listening on the multicast address ff02::2:1001 on
UDP port 1001 on the bare mesh interfaces. There is no client yet (but it’s
being developed), but you can query the information using tools like socat:

socat - UDP6-DATAGRAM:[ff02::2:1001%wlan0-1]:1001
nodeinfo

This output is not compressed, but that is likely to change in the future. If
you intent to use gluon-announced, please contact tcatm in Gluon’s IRC
channel.

Adding a fact

To add a fact just add a file to either /lib/gluon/announce/nodeinfo.d/ or
/lib/gluon/announce/statistics.d/.

The file must contain a lua script and its name will become the key for the
resulting JSON object. A simple script adding a hostname field might look
like this:

return uci:get_first('system', 'system', 'hostname')

The directory structure will be converted to a JSON object, i.e. you may
create subdirectories. So, if the directories look like this

.
├── hardware
│ └── model
├── hostname
├── network
│ └── mac
├── node_id
└── software
 └── firmware

the resulting JSON would become:

/lib/gluon/announce/announce.lua nodeinfo
{
 "hardware" : {
 "model" : "TP-Link TL-MR3420 v1"
 },
 "hostname" : "mr3420-test",
 "network" : {
 "mac" : "90:f6:52:82:06:02"
 },
 "node_id" : "90f652820602",
 "software" : {
 "firmware" : {
 "base" : "gluon-v2014.2-32-ge831099",
 "release" : "0.4.1+0-exp20140720"
 }
 }
}

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Adding SSH public keys

By using the package gluon-authorized-keys it is possible to add
SSH public keys to an image to permit root login.

If you select this package, add a list of authorized keys to site.conf like this::

{
 authorized_keys = { 'ssh-rsa AAA.... user1@host',
 'ssh-rsa AAA.... user2@host },
 hostname_prefix = ...
 ...

Existing keys in /etc/dropbear/authorized_keys will be preserved.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Development Basics

Gluon’s source is kept in git repositories [https://github.com/freifunk-gluon] at GitHub.

Bug Tracker

The main repo [https://github.com/freifunk-gluon/gluon] does have issues enabled.

IRC

Gluon’s developers frequent #gluon on hackint. You’re welcome to join us!

Working with repositories

To update the repositories used by Gluon, just adjust the commit IDs in modules and
rerun

make update

make update also applies the patches that can be found in the directories found in
patches; the resulting branch will be called patched, while the commit specified in modules
can be refered to by the branch base.

make unpatch

sets the repositories to the base branch,

make patch

re-applies the patches by resetting the patched branch to base and calling git am
for the patch files. Calling make or a similar command after calling make unpatch
is generally not a good idea.

After new patches have been commited on top of the patched branch (or existing commits
since the base commit have been edited or removed), the patch directories can be regenerated
using

make update-patches

If applying a patch fails because you have changed the base commit, the repository will be reset to the old patched branch
and you can try rebasing it onto the new base branch yourself and after that call make update-patches to fix the problem.

Always call make update-patches after making changes to a module repository as make update will overwrite your
commits, making git reflog the only way to recover them!

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Adding support for new hardware

This page will give a short overview on how to add support
for new hardware to Gluon.

Hardware requirements

Having an ath9k (or ath10k) based WLAN adapter is highly recommended,
although other chipsets may also work. VAP (multiple SSID) support
is a requirement. At the moment, Gluon’s scripts can’t handle devices
without WLAN adapters (although such environments may also be interesting,
e.g. for automated testing in virtual machines).

Adding profiles

The vast majority of devices with ath9k WLAN uses the ar71xx target of OpenWrt.
If the hardware you want to add support for is also ar71xx, adding a new profile
is enough.

Profiles are defined in targets/<target>-<subtarget>/profiles.mk. There are two macros
used to define which images are generated: GluonProfile and GluonModel. The following examples
are taken from profiles.mk of the ar71xx-generic target:

$(eval $(call GluonProfile,TLWR1043))
$(eval $(call GluonModel,TLWR1043,tl-wr1043nd-v1-squashfs,tp-link-tl-wr1043n-nd-v1))
$(eval $(call GluonModel,TLWR1043,tl-wr1043nd-v2-squashfs,tp-link-tl-wr1043n-nd-v2))

The GluonProfile macro takes at least one parameter, the profile name as it is
defined in the Makefiles of OpenWrt (openwrt/target/linux/<target>/<subtarget>/profiles/*
and openwrt/target/linux/<target>/image/Makefile). If the target you are on doesn’t define
profiles (e.g. on x86), just add a single profile called Generic or similar.

It may optionally take a second parameter which defines additional packages to include for the profile
(e.g. ath10k). The additional packages defined in openwrt/target/linux/<target>/<subtarget>/profiles/*
aren’t used.

The GluonModel macro takes three parameters: The profile name, the suffix of the image file
generated by OpenWrt (without the file extension), and the final image name of the Gluon image.
The final image name must be the same that is returned by the following command.

lua -e 'print(require("platform_info").get_image_name())'

This is just for the autoupdater can work. The command has to be executed _on_ the target (eg. the hardware router with a flashed image). So you’ll first have to build an image with a guessed name, and afterwards build a new, correctly named image. On targets which aren’t supported by the autoupdater,
require("platform_info").get_image_name() will just return nil and the final image name
may be defined arbitrarily.

On devices with multiple WLAN adapters, care must also be taken that the primary MAC address is
configured correctly. /lib/gluon/core/sysconfig/primary_mac should contain the MAC address which
can be found on a label on most hardware; if it does not, /lib/gluon/upgrade/core/initial/001-sysconfig
in gluon-core might need a fix. (There have also been cases in which the address was incorrect
even on devices with only one WLAN adapter, in these cases an OpenWrt bug was the cause).

Adding support for new hardware targets

Adding a new target is much more complex than adding a new profile. There are two basic steps
required for adding a new target:

Adjust packages

One package that definitely needs adjustments for every new target added is lua-platform-info. Just
start with a copy of an existing platform info script, adjust it for the new target, and add the new target
to the list of supported targets in the package Makefile.

On many targets, Gluon’s network setup scripts (mainly in the packages gluon-core and gluon-mesh-batman-adv-core)
won’t run correctly without some adjustments, so better double check that everything is fine there (and the files
primary_mac, lan_ifname and wan_ifname in /lib/gluon/core/sysconfig/ contain sensible values).

Add support to the build system

A directory for the new target must be created under targets, and it must be added
to targets/targets.mk. In the new target directory, four files must be created:

	config

	kernel-config

	kernel-vermagic

	profiles.mk

The file config can be used to add additional, target-specific options to the OpenWrt config. If such options
aren’t necessary, it can be left empty. For profiles.mk, see Adding profiles.

The files kernel-config and kernel-vermagic must have the correct content so kernel modules from the upstream repositories
can be easily installed. The OpenWrt version a Gluon release is based on is defined by the upstream package repo URL in include/gluon.mk
(in the variable CONFIG_VERSION_REPO); at the time this documentation was written, this was barrier_breaker/14.07-rc3; whenever
the package repo is updated, all kernel-config and kernel-vermagic files must be updated as well.

The file kernel-vermagic just contains a hash which is part of the version number of the kernel package. So in the case of ar71xx-generic on
barrier_breaker/14.07-rc3, we look in the directory https://downloads.openwrt.org/barrier_breaker/14.07-rc3/ar71xx/generic/packages/ and
find that the kernel package is called kernel_3.10.49-1-94831e5bcf361d1c03e87a15e152b0e8_ar71xx.ipk. This makes the kernel-vermagic the
string 94831e5bcf361d1c03e87a15e152b0e8.

For kernel-config, the OpenWrt image builder must be downloaded. Again, for ar71xx-generic on
barrier_breaker/14.07-rc3, we download OpenWrt-SDK-ar71xx-for-linux-x86_64-gcc-4.8-linaro_uClibc-0.9.33.2.tar.bz2
from https://downloads.openwrt.org/barrier_breaker/14.07-rc3/ar71xx/generic/. After unpacking it, we use the file
OpenWrt-ImageBuilder-ar71xx_generic-for-linux-x86_64/build_dir/target-mips_34kc_uClibc-0.9.33.2/linux-ar71xx_generic/linux-3.10.49/.config
as our kernel-config.

After this, is should be sufficient to call make GLUON_TARGET=<target>-<subtarget> to build the images for the new target.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Config Mode

As of 2014.4 gluon-config-mode consists of several modules.

	gluon-config-mode-core

	This modules provides the core functionality for the config mode.
All modules must depend on it.

	gluon-config-mode-hostname

	Provides a hostname field.

	gluon-config-mode-autoupdater

	Informs whether the autoupdater is enabled.

	gluon-config-mode-mesh-vpn

	Allows toggling of mesh-vpn-fastd and setting a bandwidth limit.

	gluon-config-mode-geo-location

	Enables the user to set the geographical location of the node.

	gluon-config-mode-contact-info

	Adds a field where the user can provide contact information.

In order to get a config mode close to the one found in 2014.3.x you may add
these modules to your site.mk:
gluon-config-mode-hostname,
gluon-config-mode-autoupdater,
gluon-config-mode-mesh-vpn,
gluon-config-mode-geo-location,
gluon-config-mode-contact-info

Writing Config Mode Modules

Config mode modules are located at /lib/gluon/config-mode/wizard and
/lib/gluon/config-mode/reboot. Modules are named like 0000-name.lua and
are executed in lexical order. If you take the standard set of modules, the
order is, for wizard modules:

	0050-autoupdater-info

	0100-hostname

	0300-mesh-vpn

	0400-geo-location

	0500-contact-info

While for reboot modules it is:

	0100-mesh-vpn

	0900-msg-reboot

Wizards

Wizard modules return a UCI section. A simple module capable of changing the
hostname might look like this:

local cbi = require "luci.cbi"
local uci = luci.model.uci.cursor()

local M = {}

function M.section(form)
 local s = form:section(cbi.SimpleSection, nil, nil)
 local o = s:option(cbi.Value, "_hostname", "Hostname")
 o.value = uci:get_first("system", "system", "hostname")
 o.rmempty = false
 o.datatype = "hostname"
end

function M.handle(data)
 uci:set("system", uci:get_first("system", "system"), "hostname", data._hostname)
 uci:save("system")
 uci:commit("system")
end

return M

Reboot page

Reboot modules return a function that will be called when the page is to be
rendered or nil (i.e. the module is skipped):

if no_hello_world_today then
 return nil
else
 return function ()
 luci.template.render_string("Hello World!")
 end
end

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Gluon 2014.4

Added (and removed) hardware support

	Buffalo
	WZR-HP-AG300H / WZR-600DHP

	WZR-HP-G450H

	D-Link
	DIR-615 (E1) support had to be dropped

	TP-LINK
	CPE210/220/510/520 (v1)

	TL-MR3040 (v2

	TL-WA750RE (v1)

	TL-WA801N/ND (v2)

	TL-WA850RE (v1)

	TL-WR703N (v1)

	TL-WR710N (v1)

	TL-WR1043N/ND (v2)

New features

OpenWrt Barrier Breaker

Switching to the new OpenWrt release 14.09 (“Barrier Breaker”) has yielded
lots of updates for both the kernel and most packages. Besides better
performance, this has also greatly improved stability (far less out-of-memory
issues!).

Modular config mode

The old gluon-config-mode package has been split into five
small packages, each providing a single section of the config
mode form. This simplifies removing or replacing parts of the wizard.

See the Site changes section for details.

Experimental support for batman-adv compat 15

As batman-adv has broken compatiblity starting with batman-adv 2014.0
(bumping the “compat level” to 15), Gluon users must decide which
batman-adv version to use. The package for the old batman-adv version
gluon-mesh-batman-adv has been renamed to gluon-mesh-batman-adv-14,
the new version can be used with gluon-mesh-batman-adv-15.

Please note that batman-adv compat 15 still isn’t tested very well
(and there are known bugs in the current release 2014.3), so for now
we still recommend using compat 14 in “production” environments.

fastd v16

Besides other new features and bugfixes, fastd v16 support the new
authentication method “UMAC”. We recommend switching from the old
salsa2012+gmac and null+salsa2012+gmac methods to the new
salsa2012+umac and null+salsa2012+umac as UMAC is
much faster and even more secure than GMAC.

Private WLAN

The new package gluon-luci-private-wifi allows to configure a private WLAN
with WPA-PSK in the expert mode which is bridged with the WAN uplink.

Embedding SSH keys

Using gluon-authorized-keys it is possible to embed predefined SSH
public keys to firmware images. If gluon-config-mode-* is left out
images will be ready to mesh after the first boot with SSH running for
further configuration.

Status page resolves nodenames

The tools gluon-announced and gluon-neighbour-info are now
available. Using them enables the status page to resolve hostnames and
IPs of a nodes’ neighbours.

This will also work on devices with multiple wireless interfaces.

Bugfixes

	Expert Mode: Fixed all SSH keys being removed when a password was set

	gluon-mesh-vpn-fastd: Fixed VPN peers removed from the site.conf not being removed from /etc/config/fastd

	TL-LINK TL-WDR3600/4300: Added workaround for reboot issues

	Improved stability (due to switch to OpenWrt Barrier Breaker)

Site changes

	site.mk
	Obsolete packages:
	gluon-config-mode

	gluon-mesh-batman-adv

	Recommended new packages:
	gluon-config-mode-autoupdater

	gluon-config-mode-hostname

	gluon-config-mode-mesh-vpn

	gluon-config-mode-geo-location

	gluon-config-mode-contact-info

	gluon-mesh-batman-adv-14 (specify this before all other packages in the site.mk!)

Internals

The switch to Barrier Breaker has led to a multitude of changes all over Gluon:

	The config mode/setup mode is now started by an own set of init scripts in /lib/gluon/setup-mode/rc.d run by procd

	Many tools and services used by Gluon have been replaced by our own implementations to reduce the size of the images:
	ethtool has been replaced by our minimal Lua library lua-ethtool-stats

	tc has been replaced by our minimal implementation gluon-simple-tc

	radvd has been replaced by our minimal implementation gluon-radvd

Known Issues

Alfred crashes

https://github.com/freifunk-gluon/gluon/issues/177

Alfred may still crash unconditionally. Some measures have been taken
to aid but the core problem hasn’t been analyzed yet.

Out of memory / batman-adv memory leaks

https://github.com/freifunk-gluon/gluon/issues/216

In some (hopefully rare!) cases batman-adv may still leak memory
associated with global TT entries. This may result in kernel panics or
out-of-memory conditions.

Ignored tx-power offset on Ubiquiti AirMax devices

https://github.com/freifunk-gluon/gluon/issues/94

There is still no OpenWRT support for determining the transmission
power offsets on Ubiquiti AirMax devices (Bullet M2, Picostation
M2, Nanostation (loco) M2, ...). Use Gluon with caution on these
devices! Manual adjustment may be required.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gluon 2014.3 documentation

Gluon 2014.3.1

This is a bugfix release.

Bugfixes

	gluon-announced zombie process bug

gluon-announced was creating zombie processes when answering requests, causing issues
with the new status page which is currently in development.

	fastd peers removed from site.conf weren’t removed correctly from the fastd configuration
on firmware upgrades

	Expert Mode: setting a password will not remove SSH keys anymore

	alfred has been updated to 2014.3.0

We hope this solves the alfred stability issues noted by several people.

	gluon-ebtables-filter-ra-dhcp and gluon-ebtables-filter-multicast have been fixed
to allow DHCPv6 to work

	Another ath9k patch has been added, which might further improve WLAN stability and performance

New features

	Support for static WAN setups instead of (DHCP/Router Advertisement) has been added;
configuration is possible on the port config page of the Expert Mode.

Site changes

	site.conf
	The new boolean option fastd_mesh_vpn.enabled allows
enabling the mesh VPN by default. This value is optional;
if it isn’t specified, the mesh VPN will be disabled.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Gluon 2014.3 documentation

Gluon 2014.3

New hardware support

	Linksys WRT160NL

New features

New autoupdater

The autoupdater has been rewritten.

Two new fields have been added to the manifest:

	DATE

	Specifies the time and date the update was released. make manifest will take care of setting it to the correct value.

	PRIORITY

	Specifies the maximum number of days until the update should be attempted (thus lower numbers
mean the priority is higher). It must be set either in site.mk or on the make manifest command line.

Updates will be attempted at night, between 04:00 and 5:00, with a specific probability.
When less than PRIORITY days have passed (calculated using DATE and the current time),
the probability will proportional to the time passed. I.e. the update probability will start at 0
and slowly increase to 1 until PRIORITY days have passed. From then, the probability will be fixed at 1.

Note: For the new update logic to work, a valid NTP server reachable over the mesh (using IPv6) must
be configured in site.conf. If the autoupdater is unable to determine the correct time, it will fall back to
a behavior similar to the old implementation (i.e. hourly update attempts).

Seperation of announced data

The data announced by alfred has been split into two data types:

	nodeinfo (type 158) contains all static information about a node

	statistics (type 159) contains all dynamic information about a node

Both types also contain a new field node_id which contains an arbitrary unique ID
(currently the primary MAC address, sans colons) which can be used to match the nodeinfo
with statistics information.

gluon-announced

A new daemon has been added in a new package gluon-announced. This daemon can be
used for querying the nodeinfo data of a node via link-local multicast on the ad-hoc
interfaces.

At the moment, this daemon is not used, but we recommend including it in site.mk nevertheless
as we plan to implement a new status page showing some information about neighbor nodes in
the next version of Gluon.

VPN over IPv6

It is now possible to use fastd in IPv6 WAN networks. This still needs testing, but it should work well.

Please note that the MTU of 1426 used by many communities for VPN over IPv4 is too big for IPv6 as
the IPv6 header is 20 bytes longer (fastd over IPv4 has an overhead of 66 bytes,
fastd over IPv6 has an overhead of 86 bytes).

More modular Config Mode

The package gluon-config-mode has been split into multiple packages to simplify the development of
extensions. The low-level logic (handling of the button, starting the services for the config mode) has been moved
into a new package gluon-setup-mode, while gluon-config-mode only contains the frontend now.

Extended Expert Mode

The Expert Mode now has a nice info page. In addition, the new package gluon-luci-portconfig has been added
which allows simple configuration of batman-adv on the WAN interface.

Site validators

The content of the site.conf is now validated when the images are built to make it less likely to accidentially
build broken images.

gluon-firewall

The package gluon-firewall has been removed. Its features are now part of the packages gluon-core and
gluon-mesh-batman-adv.

gluon-ath9k-workaround

This package installs a cron job which tries to recognize ath9k hangs and restart the WLAN while recording some information.
It is very rudimentary and we can’t really recommend using it on “production” nodes.

Bugfixes

Improved ath9k stability

Multiple bugs in the WLAN driver ath9k have been fixed upstream. This should greatly improve the WLAN stability.

odhcp6c 50 day bug

An important update for odhcp6c fixes a bug which caused Gluon nodes to lose their IPv6 addresses on br-client after an uptime
of 50 days, making the nodes unable perform automated updates (besides other issues).

IPv6 preference

Commands like wget now prefer IPv6 for domains with both AAAA and A records, allowing to use such domains for the autoupdater URLs
and as NTP servers in site.conf.

Site changes

	site.conf
	The probability fields for the autoupdater branches can be dropped as they aren’t used anymore

	The type of the enabled options of the gluon-simple-tc configuration has been changed to boolean, so true and false must be used instead of 1 and 0 now

	site.mk
	Obsolete packages:
	gluon-firewall

	Recommended new packages:
	gluon-announced

	gluon-luci-portconfig

	GLUON_PRIORITY must be set in site.mk or on the make manifest commandline. Use GLUON_PRIORITY ?= 0 in site.mk to allow overriding from the commandline.

Internals

Some internal changes not mentioned before which are interesting for developers:

	Many more shell scripts have been converted to Lua

	gluon-mesh-vpn-fastd now uses the new package gluon-wan-dnsmasq, which provides a secondary DNS server on port 54
that is only reachable from localhost and uses the DNS servers on the WAN interface for everything. This allowed us to
remove some ugly hacks which were making the DNS servers used depend on the domain being resolved.

For IPv6, the default route is now controlled via packet marks, so the secondary DNS server and fastd set the packet mark
so they use the default route provided on the WAN interface instead of the mesh.

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Gluon 2014.3 documentation

Index

 Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_images/node_configmode.gif
PWRsYs wan O 4B wan Uss ass

Wireless N Gigabit Router TL-WR1043ND

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Gluon 2014.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Project Gluon.
 Created using Sphinx 1.2.2.

