

Welcome to Gluon

Gluon is a modular framework for creating OpenWrt-based firmwares for wireless mesh nodes.
Several Freifunk communities in Germany use Gluon as the foundation of their Freifunk firmwares.

User Documentation

	Getting Started
	Selecting the right version

	Dependencies

	Building the images

	opkg repositories

	Make variables

	Site configuration
	Configuration

	Build configuration

	Config mode texts

	Site modules

	Examples

	x86 support
	Targets

	Frequently Asked Questions
	DNS does not work on the nodes

	What is a good MTU on the mesh-vpn

Features

	Config Mode
	Activating Config Mode

	Port Configuration

	Accessing Config Mode

	Autoupdater
	Building Images

	Automated nightly builds

	Infrastructure

	Command Line

	WLAN configuration
	Upgrade behaviour

	Private WLAN

	Wired mesh (Mesh-on-WAN/LAN)
	Wired mesh encapsulation

	Configuration

	DNS forwarder

	Node monitoring
	Format of collected data

	Accessing Node Information

	Adding a data provider

	Multidomain Support
	Preamble

	Overview

	Switching the domain

	Allowed site variables

	Example config

	Adding SSH public keys

	Roles

	Mesh-VPN
	fastd

Developer Documentation

	Development Basics
	Bug Tracker

	IRC

	Working with repositories

	Development Guidelines

	Adding support for new hardware
	Hardware requirements

	Adding profiles

	Adding support for new hardware targets

	Package development
	Gluon package makefiles

	Feature flags

	Upgrade scripts
	Basics

	Best practices

	Script ordering

	WAN support
	Routing tables

	libpacketmark

	gluon-wan-dnsmasq

	MAC addresses

	gluon.site library

gluon-web Reference

	Controllers

	Models

	Views

	Internationalization support

	Config Mode

Packages

	gluon-client-bridge

	gluon-config-mode-domain-select

	gluon-ebtables-filter-multicast

	gluon-ebtables-filter-ra-dhcp

	gluon-ebtables-limit-arp

	gluon-ebtables-source-filter

	gluon-radv-filterd

	gluon-web-admin

	gluon-web-logging

Releases

	Gluon 2018.1.2

	Gluon 2018.1.1

	Gluon 2018.1

	Gluon 2017.1.8

	Gluon 2017.1.7

	Gluon 2017.1.6

	Gluon 2017.1.5

	Gluon 2017.1.4

	Gluon 2017.1.3

	Gluon 2017.1.2

	Gluon 2017.1.1

	Gluon 2017.1

	Gluon 2016.2.7

	Gluon 2016.2.6

	Gluon 2016.2.5

	Gluon 2016.2.4

	Gluon 2016.2.3

	Gluon 2016.2.2

	Gluon 2016.2.1

	Gluon 2016.2

	Gluon 2016.1.6

	Gluon 2016.1.5

	Gluon 2016.1.4

	Gluon 2016.1.3

	Gluon 2016.1.2

	Gluon 2016.1.1

	Gluon 2016.1

	Gluon 2015.1.2

	Gluon 2015.1.1

	Gluon 2015.1

	Gluon 2014.4

	Gluon 2014.3.1

	Gluon 2014.3

Supported Devices & Architectures

ar71xx-generic

	8devices

	Carambola 2

	ALFA Network

	AP121

	AP121F

	AP121U

	Hornet-UB

	Tube2H

	N2

	N5

	Allnet

	ALL0315N

	AVM

	Fritz!Box 4020

	Buffalo

	WZR-HP-AG300H / WZR-600DHP

	WZR-HP-G300NH

	WZR-HP-G300NH2

	WZR-HP-G450H

	D-Link

	DIR-505 (A1, A2)

	DIR-825 (B1)

	GL Innovations

	GL-AR150

	GL-AR300M

	GL-AR750 1

	GL-iNet 6408A (v1)

	GL-iNet 6416A (v1)

	Linksys

	WRT160NL

	Netgear

	WNDR3700 (v1, v2, v5)

	WNDR3800

	WNDRMAC (v2)

	Onion

	Omega

	OpenMesh

	A40

	A60

	MR600 (v1, v2)

	MR900 (v1, v2)

	MR1750 (v1, v2) 1

	OM2P (v1, v2, v4)

	OM2P-HS (v1, v2, v3, v4)

	OM2P-LC

	OM5P

	OM5P-AN

	OM5P-AC (v1, v2) 1

	TP-Link

	Archer C5 (v1) 1

	Archer C59 (v1) 2

	Archer C7 (v2, v4) 1

	CPE210 (v1.0, v1.1, v2.0)

	CPE220 (v1.1)

	CPE510 (v1.0, v1.1)

	CPE520 (v1.1)

	RE450 1

	TL-WDR3500 (v1)

	TL-WDR3600 (v1)

	TL-WDR4300 (v1)

	TL-WR710N (v1, v2.1)

	TL-WR842N/ND (v1, v2, v3)

	TL-WR1043N/ND (v1, v2, v3, v4, v5)

	TL-WR2543N/ND (v1)

	WBS210 (v1.20)

	WBS510 (v1.20)

	Ubiquiti

	Air Gateway

	Air Gateway LR

	Air Gateway PRO

	Air Router

	Bullet M2/M5

	Loco M2/M5

	Loco M2/M5 XW

	Nanostation M2/M5

	Nanostation M2/M5 XW

	Picostation M2/M5

	Rocket M2/M5

	Rocket M2/M5 Ti

	Rocket M2/M5 XW

	UniFi AC Mesh 1

	UniFi AP

	UniFi AP AC Lite 1

	UniFi AP AC LR 1

	UniFi AP AC Pro 1

	UniFi AP LR

	UniFi AP Pro

	UniFi AP Outdoor

	UniFi AP Outdoor+

	Western Digital

	My Net N600

	My Net N750

ar71xx-nand

	Netgear

	WNDR3700 (v4)

	WNDR4300 (v1)

	ZyXEL

	NBG6716 1

ar71xx-tiny

	D-Link

	DIR-615 (C1)

	TP-Link

	TL-MR13U (v1)

	TL-MR3020 (v1)

	TL-MR3040 (v1, v2)

	TL-MR3220 (v1, v2)

	TL-MR3420 (v1, v2)

	TL-WA701N/ND (v1, v2)

	TL-WA730RE (v1)

	TL-WA750RE (v1)

	TL-WA801N/ND (v1, v2, v3)

	TL-WA830RE (v1, v2)

	TL-WA850RE (v1)

	TL-WA860RE (v1)

	TL-WA901N/ND (v1, v2, v3, v4, v5)

	TL-WA7210N (v2)

	TL-WA7510N (v1)

	TL-WR703N (v1)

	TL-WR710N (v1, v2, v2.1)

	TL-WR740N (v1, v3, v4, v5)

	TL-WR741N/ND (v1, v2, v4, v5)

	TL-WR743N/ND (v1, v2)

	TL-WR841N/ND (v3, v5, v7, v8, v9, v10, v11, v12)

	TL-WR843N/ND (v1)

	TL-WR940N (v1, v2, v3, v4, v5, v6)

	TL-WR941ND (v2, v3, v4, v5, v6)

brcm2708-bcm2708

	RaspberryPi 1

brcm2708-bcm2709

	RaspberryPi 2

ipq806x

	TP-Link

	Archer C2600 2

mpc85xx-generic

	TP-Link

	TL-WDR4900 (v1)

ramips-mt7620

	GL Innovations

	GL-MT300A 2

	GL-MT300N 2

	GL-MT750 2

ramips-mt7621

	Ubiquiti

	EdgeRouter X

	EdgeRouter X-SFP

ramips-mt7628

	VoCore

	VoCore2 2

ramips-rt305x

	A5-V11 2

	D-Link

	DIR-615 (D1, D2, D3, D4, H1) 2

	VoCore

	VoCore (8M) 2

	VoCore (16M) 2

sunxi

	LeMaker

	Banana Pi M1

x86-generic

	x86-generic

	x86-virtualbox

	x86-vmware

See also: x86 support

x86-geode

	x86-geode

See also: x86 support

x86-64

	x86-64-generic

	x86-64-virtualbox

	x86-64-vmware

See also: x86 support

Footnotes

	1(1,2,3,4,5,6,7,8,9,10,11)

	Device uses the ath10k WLAN driver; images are built for 11s by default unless GLUON_WLAN_MESH
is set as described in Make variables

	2(1,2,3,4,5,6,7,8,9,10)

	Device does not support IBSS; images are built by default unless GLUON_WLAN_MESH
is explicitly set to something other than 11s

License

See LICENCE [https://github.com/freifunk-gluon/gluon/blob/master/LICENSE]

Indices and tables

	Index

	Search Page

Getting Started

Selecting the right version

Gluon’s releases are managed using Git tags [http://git-scm.com/book/en/Git-Basics-Tagging]. If you are just getting
started with Gluon we recommend to use the latest stable release of Gluon.

Take a look at the list of gluon releases [https://github.com/freifunk-gluon/gluon/releases] and notice the latest release,
e.g. v2018.1.2. Always get Gluon using git and don’t try to download it
as a Zip archive as the archive will be missing version information.

Please keep in mind that there is no “default Gluon” build; a site configuration
is required to adjust Gluon to your needs. Due to new features being added (or
sometimes being removed) the format of the site configuration changes slightly
between releases. Please refer to our release notes for instructions to update
an old site configuration to a newer release of Gluon.

An example configuration can be found in the Gluon repository at docs/site-example/.

Dependencies

To build Gluon, several packages need to be installed on the system. On a
freshly installed Debian Wheezy system the following packages are required:

	git (to get Gluon and other dependencies)

	subversion

	python (Python 3 doesn’t work)

	build-essential

	gawk

	unzip

	libncurses-dev (actually libncurses5-dev)

	libz-dev (actually zlib1g-dev)

	libssl-dev

	wget

Building the images

To build Gluon, first check out the repository. Replace RELEASE with the
version you’d like to checkout, e.g. v2018.1.2.

git clone https://github.com/freifunk-gluon/gluon.git gluon -b RELEASE

This command will create a directory named gluon/.
It might also tell a scary message about being in a detached state.
Don’t panic! Everything’s fine.
Now, enter the freshly created directory:

cd gluon

It’s time to add (or create) your site configuration. If you already
have a site repository, just clone it:

git clone https://github.com/freifunk-alpha-centauri/site-ffac.git site

If you want to build a new site, create a new git repository site/:

mkdir site
cd site
git init

Copy site.conf, site.mk and i18n from docs/site-example:

cp ../docs/site-example/site.conf .
cp ../docs/site-example/site.mk .
cp -r ../docs/site-example/i18n .

Edit these files as you see fit and commit them into the site repository.
Extensive documentation about the site configuration can be found at:
Site configuration. The
site directory should always be a git repository by itself; committing site-specific files
to the Gluon main repository should be avoided, as it will make updates more complicated.

Next go back to the top-level Gluon directory and build Gluon:

cd ..
make update # Get other repositories used by Gluon
make GLUON_TARGET=ar71xx-generic # Build Gluon

In case of errors read the messages carefully and try to fix the stated issues (e.g. install tools not available yet).

ar71xx-generic is the most common target and will generate images for most of the supported hardware.
To see a complete list of supported targets, call make without setting GLUON_TARGET.

You should generally reserve 5GB of disk space and additionally about 10GB for each GLUON_TARGET.

The built images can be found in the directory output/images. Of these, the factory
images are to be used when flashing from the original firmware a device came with,
and sysupgrade is to upgrade from other versions of Gluon or any other OpenWrt/LEDE-based
system.

Note: The images for some models are identical; to save disk space, symlinks are generated instead
of multiple copies of the same image. If your webserver’s configuration prohibits following
symlinks, you can use the following command to resolve these links while copying the images:

cp -rL output/images /var/www

Cleaning the build tree

There are two levels of make clean:

make clean GLUON_TARGET=ar71xx-generic

will ensure all packages are rebuilt for a single target. This normally not
necessary, but may fix certain kinds of build failures.

make dirclean

will clean the entire tree, so the toolchain will be rebuilt as well, which will take a while.

opkg repositories

Gluon is mostly compatible with LEDE, so the normal LEDE package repositories
can be used for Gluon as well.

This is not true for kernel modules; the Gluon kernel is incompatible with the
kernel of the default LEDE images. Therefore, Gluon will not only generate images,
but also an opkg repository containing all core packages provided by LEDE,
including modules for the kernel of the generated images.

Signing keys

Gluon does not support HTTPS for downloading packages; fortunately, opkg deploys
public-key cryptography to ensure package integrity.

The Gluon images will contain public keys from two sources: the official LEDE keyring
(to allow installing userspace packages) and a Gluon-specific key (which is used
to sign the generated package repository).

LEDE will handle the generation and handling of the keys itself.
When making firmware releases based on Gluon, it might make sense to store
the keypair, so updating the module repository later is possible.

Make variables

Gluon’s build process can be controlled by various variables. They can
usually be set on the command line or in site.mk.

Common variables

	GLUON_BRANCH

	Sets the default branch of the autoupdater. If unset, the autoupdater is disabled
by default. For the make manifest command, GLUON_BRANCH defines the branch to
generate a manifest for.

	GLUON_LANGS

	Space-separated list of languages to include for the config mode/advanced settings. Defaults to en.
en should always be included, other supported languages are de and fr.

	GLUON_PRIORITY

	Defines the priority of an automatic update in make manifest. See Autoupdater for
a detailed description of this value.

	GLUON_REGION

	Some devices (at the moment the TP-Link Archer C7) contain a region code that restricts
firmware installations. Set GLUON_REGION to eu or us to make the resulting
images installable from the respective stock firmwares.

	GLUON_RELEASE

	Firmware release number: This string is displayed in the config mode, announced
via respondd/alfred and used by the autoupdater to decide if a newer version
is available. The same GLUON_RELEASE has to be passed to make and make manifest
to generate a correct manifest.

	GLUON_TARGET

	Target architecture to build.

Special variables

	GLUON_BUILDDIR

	Working directory during build. Defaults to build.

	GLUON_IMAGEDIR

	Path where images will be stored. Defaults to $(GLUON_OUTPUTDIR)/images.

	GLUON_PACKAGEDIR

	Path where the opkg package repository will be stored. Defaults to $(GLUON_OUTPUTDIR)/packages.

	GLUON_OUTPUTDIR

	Path where output files will be stored. Defaults to output.

	GLUON_SITEDIR

	Path to the site configuration. Defaults to site.

Site configuration

The site consists of the files site.conf and site.mk.
In the first community based values are defined, which both are processed
during the build process and runtime.
The last is directly included in the make process of Gluon.

Configuration

The site.conf is a lua dictionary with the following defined keys.

	hostname_prefix

	A string which shall prefix the default hostname of a device.

	site_name

	The name of your community.

	site_code

	The code of your community. It is good practice to use the TLD of
your community here.

	domain_seed

	32 bytes of random data, encoded in hexadecimal, used to seed other random
values specific to the mesh domain. It must be the same for all nodes of one
mesh, but should be different for firmwares that are not supposed to mesh with
each other.

The recommended way to generate a value for a new site is:

echo $(hexdump -v -n 32 -e '1/1 "%02x"' </dev/urandom)

	prefix4 : optional

	The IPv4 Subnet of your community mesh network in CIDR notation, e.g.

prefix4 = '10.111.111.0/18'

Required if next_node.ip4 is set.

	prefix6

	The IPv6 subnet of your community mesh network, e.g.

prefix6 = 'fdca::ffee:babe:1::/64'

	timezone

	The timezone of your community live in, e.g.

-- Europe/Berlin
timezone = 'CET-1CEST,M3.5.0,M10.5.0/3'

	ntp_server

	List of NTP servers available in your community or used by your community, e.g.:

ntp_servers = {'1.ntp.services.ffac','2.ntp.services.ffac'}

This NTP servers must be reachable via IPv6 from the nodes. If you don’t want to set an IPv6 address
explicitly, but use a hostname (which is recommended), see also the FAQ.

	opkg : optional

	opkg package manager configuration.

There are two optional fields in the opkg section:

	lede overrides the default LEDE repository URL. The default URL would
correspond to http://downloads.lede-project.org/snapshots/packages/%A
and usually doesn’t need to be changed when nodes are expected to have IPv6
internet connectivity.

	extra specifies a table of additional repositories (with arbitrary keys)

opkg = {
 lede = 'http://opkg.services.ffac/lede/snapshots/packages/%A',
 extra = {
 gluon = 'http://opkg.services.ffac/modules/gluon-%GS-%GR/%S',
 },
}

There are various patterns which can be used in the URLs:

	%n is replaced by the LEDE version codename

	%v is replaced by the LEDE version number (e.g. “17.01”)

	%S is replaced by the target board (e.g. “ar71xx/generic”)

	%A is replaced by the target architecture (e.g. “mips_24kc”)

	%GS is replaced by the Gluon site code (as specified in site.conf)

	%GV is replaced by the Gluon version

	%GR is replaced by the Gluon release (as specified in site.mk)

	regdom : optional

	The wireless regulatory domain responsible for your area, e.g.:

regdom = 'DE'

Setting regdom is mandatory if wifi24 or wifi5 is defined.

	wifi24 : optional

	WLAN configuration for 2.4 GHz devices.
channel must be set to a valid wireless channel for your radio.

There are currently three interface types available. You may choose to
configure any subset of them:

	ap creates a master interface where clients may connect

	mesh creates an 802.11s mesh interface with forwarding disabled

	ibss creates an ad-hoc interface

Each interface may be disabled by setting disabled to true.
This will only affect new installations.
Upgrades will not change the disabled state.

Additionally it is possible to configure the supported_rates and basic_rate
of each radio. Both are optional, by default hostapd/driver dictate the rates.
If supported_rates is set, basic_rate is required, because basic_rate
has to be a subset of supported_rates.
The example below disables 802.11b rates.

ap requires a single parameter, a string, named ssid which sets the
interface’s ESSID. This is the WiFi the clients connect to.

mesh requires a single parameter, a string, named id which sets the
mesh id, also visible as an open WiFi in some network managers. Usually you
don’t want users to connect to this mesh-SSID, so use a cryptic id that no
one will accidentally mistake for the client WiFi.

ibss requires two parametersr: ssid (a string) and bssid (a MAC).
An optional parameter vlan (integer) is supported.

Both mesh and ibss accept an optional mcast_rate (kbit/s) parameter for
setting the multicast bitrate. Increasing the default value of 1000 to something
like 12000 is recommended.

wifi24 = {
 channel = 11,
 supported_rates = {6000, 9000, 12000, 18000, 24000, 36000, 48000, 54000},
 basic_rate = {6000, 9000, 18000, 36000, 54000},
 ap = {
 ssid = 'alpha-centauri.freifunk.net',
 },
 mesh = {
 id = 'ueH3uXjdp',
 mcast_rate = 12000,
 },
 ibss = {
 ssid = 'ff:ff:ff:ee:ba:be',
 bssid = 'ff:ff:ff:ee:ba:be',
 mcast_rate = 12000,
 },
},

	wifi5 : optional

	Same as wifi24 but for the 5Ghz radio.

	next_node : package

	Configuration of the local node feature of Gluon

next_node = {
 name = { 'nextnode.location.community.example.org', 'nextnode', 'nn' },
 ip4 = '10.23.42.1',
 ip6 = 'fdca:ffee:babe:1::1',
 mac = '16:41:95:40:f7:dc'
}

All values of this section are optional. If the IPv4 or IPv6 address is
omitted, there will be no IPv4 or IPv6 anycast address. The MAC address
defaults to 16:41:95:40:f7:dc; this value usually doesn’t need to be
changed, but it can be adjusted to match existing deployments that use a
different value.

When the nodes’ next-node address is used as a DNS resolver by clients
(by passing it via DHCP or router advertisements), it may be useful to
allow resolving a next-node hostname without referring to an upstream DNS
server (e.g. to allow reaching the node using such a hostname via HTTP or SSH
in isolated mesh segments). This is possible by providing one or more names
in the name field.

	mesh

	Configuration of general mesh functionality.

To avoid inter-mesh links, Gluon can encapsulate the mesh protocol in VXLAN
for Mesh-on-LAN/WAN. It is recommended to set mesh.vxlan to true to
enable VXLAN in new setups. Setting it to false disables this
encapsulation to allow meshing with other nodes that don’t support VXLAN
(Gluon 2017.1.x and older). In multi-domain setups, mesh.vxlan is optional
and defaults to true.

Gluon generally segments layer-2 meshes so that each node becomes IGMP/MLD
querier for its own local clients. This is necessary for reliable multicast
snooping. The segmentation is realized by preventing IGMP/MLD queries from
passing through the mesh.

By default, not only queries are filtered, but also membership report and
leave packets, as they add to the background noise of the mesh. As a
consequence, snooping switches outside the mesh that are connected to a
Gluon node need to be configured to forward all multicast traffic towards
the mesh; this is usually not a problem, as such setups are unusual. If
you run a special-purpose mesh that requires membership reports to be
working, this filtering can be disabled by setting the
optional filter_membership_reports value to false.

In addition, options specific to the batman-adv routing protocol can be set
in the batman_adv section:

The optional value gw_sel_class sets the gateway selection class. The
default is class 20, which is based on the link quality (TQ) only; class 1
is calculated from both the TQ and the announced bandwidth.

mesh = {
 vxlan = true,
 filter_membership_reports = false,
 batman_adv = {
 gw_sel_class = 1,
 },
}

	mesh_vpn

	Remote server setup for the mesh VPN.

The enabled option can be set to true to enable the VPN by default. mtu
defines the MTU of the VPN interface, determining a proper MTU value is described
in the FAQ.

By default the public key of a node’s VPN daemon is not added to announced respondd
data; this prevents malicious ISPs from correlating VPN sessions with specific mesh
nodes via public respondd data. If this is of no concern in your threat model,
this behaviour can be disabled (and thus announcing the public key be enabled) by
setting pubkey_privacy to false. At the moment, this option only affects fastd.

The fastd section configures settings specific to the fastd VPN
implementation.

If configurable is set to false or unset, the method list will be replaced on updates
with the list from the site configuration. Setting configurable to true will allow the user to
add the method null to the beginning of the method list or remove null from it,
and make this change survive updates. Setting configurable is necessary for the
package gluon-web-mesh-vpn-fastd, which adds a UI for this configuration.

In any case, the null method should always be the first method in the list
if it is supported at all. You should only set configurable to true if the
configured peers support both the null method and methods with encryption.

You can set syslog_level from verbose (default) to warn to reduce syslog output.

The tunneldigger section is used to define the tunneldigger broker list.

Note: It doesn’t make sense to include both fastd and tunneldigger
sections in the same configuration file, as only one of the packages gluon-mesh-vpn-fastd
and gluon-mesh-vpn-tunneldigger should be installed with the current
implementation.

mesh_vpn = {
 -- enabled = true,
 mtu = 1312,
 -- pubkey_privacy = true,

 fastd = {
 methods = {'salsa2012+umac'},
 -- configurable = true,
 -- syslog_level = 'warn',
 groups = {
 backbone = {
 -- Limit number of connected peers from this group
 limit = 1,
 peers = {
 peer1 = {
 key = 'XX',
 -- Having multiple domains prevents SPOF in freifunk.net
 remotes = {
 'ipv4 "vpn1.alpha-centauri.freifunk.net" port 10000',
 'ipv4 "vpn1.alpha-centauri-freifunk.de" port 10000',
 },
 },
 peer2 = {
 key = 'XX',
 -- You can also omit the ipv4 to allow both connection via ipv4 and ipv6
 remotes = {'"vpn2.alpha-centauri.freifunk.net" port 10000'},
 },
 peer3 = {
 key = 'XX',
 -- In addition to domains you can also add ip addresses, which provides
 -- resilience in case of dns outages
 remotes = {
 '"vpn3.alpha-centauri.freifunk.net" port 10000',
 '[2001:db8::3:1]:10000',
 '192.0.2.3:10000',
 },
 },
 },
 -- Optional: nested peer groups
 -- groups = {
 -- lowend_backbone = {
 -- limit = 1,
 -- peers = ...
 -- },
 -- },
 },
 -- Optional: additional peer groups, possibly with other limits
 -- peertopeer = {
 -- limit = 10,
 -- peers = { ... },
 -- },
 },
 },

 tunneldigger = {
 brokers = {'vpn1.alpha-centauri.freifunk.net'}
 },

 bandwidth_limit = {
 -- The bandwidth limit can be enabled by default here.
 enabled = false,

 -- Default upload limit (kbit/s).
 egress = 200,

 -- Default download limit (kbit/s).
 ingress = 3000,
 },
}

	mesh_on_wan : optional

	Enables the mesh on the WAN port (true or false).

mesh_on_wan = true,

	mesh_on_lan : optional

	Enables the mesh on the LAN port (true or false).

mesh_on_lan = true,

	poe_passthrough : optional

	Enable PoE passthrough by default on hardware with such a feature.

	autoupdater : package

	Configuration for the autoupdater feature of Gluon.

The mirrors are checked in random order until the manifest could be downloaded
successfully or all mirrors have been tried.

autoupdater = {
 branch = 'stable',
 branches = {
 stable = {
 name = 'stable',
 mirrors = {
 'http://[fdca:ffee:babe:1::fec1]/firmware/stable/sysupgrade/',
 'http://autoupdate.alpha-centauri.freifunk.net/firmware/stable/sysupgrade/',
 },
 -- Number of good signatures required
 good_signatures = 2,
 pubkeys = {
 'XX', -- someguy
 'XX', -- someother
 }
 }
 }
}

All configured mirrors must be reachable from the nodes via IPv6. If you don’t want to set an IPv6 address
explicitly, but use a hostname (which is recommended), see also the FAQ.

	config_mode : optional

	Additional configuration for the configuration web interface. All values are
optional.

When no hostname is specified, a default hostname based on the hostname_prefix
and the node’s primary MAC address is assigned. Manually setting a hostname
can be enforced by setting hostname.optional to false.

By default, no altitude fields are shown by the gluon-config-mode-geo-location
package. If geo_location.show_altitude is set to true, the gluon-config-mode:altitude-label
and gluon-config-mode:altitude-help strings must be provided in the site i18n
data as well.

The remote login page only shows SSH key configuration by default. A
password form can be displayed by setting remote_login.show_password_form
to true; in this case, remote_login.min_password_length defines the
minimum password length.

config_mode = {
 hostname = {
 optional = false,
 },
 geo_location = {
 show_altitude = true,
 },
 remote_login = {
 show_password_form = true,
 min_password_length = 10,
 },
},

	roles : optional

	Optional role definitions. Nodes will announce their role inside the mesh.
This will allow in the backend to distinguish between normal, backbone and
service nodes or even gateways (if they advertise that role). It is up to
the community which roles to define. See the section below as an example.
default takes the default role which is set initially. This value should be
part of list. If you want node owners to change the role via config mode add
the package gluon-web-node-role to site.mk.

The strings to display in the web interface are configured per language in the
i18n/en.po, i18n/de.po, etc. files of the site repository using message IDs like
gluon-web-node-role:role:node and gluon-web-node-role:role:backbone.

roles = {
 default = 'node',
 list = {
 'node',
 'test',
 'backbone',
 'service',
 },
},

	setup_mode : package

	Allows skipping setup mode (config mode) at first boot when attribute
skip is set to true. This is optional and may be left out.

setup_mode = {
 skip = true,
},

Build configuration

The site.mk is a Makefile which defines various values
involved in the build process of Gluon.

	GLUON_FEATURES

	Defines a list of features to include. The feature list is used to generate
the default package set.

	GLUON_SITE_PACKAGES

	Defines a list of packages which should be installed in addition to the
default package set. It is also possible to remove packages from the
default set by prepending a minus sign to the package name.

	GLUON_RELEASE

	The current release version Gluon should use.

	GLUON_PRIORITY

	The default priority for the generated manifests (see the autoupdater documentation
for more information).

	GLUON_REGION

	Region code to build into images where necessary. Valid values are the empty string,
us and eu.

	GLUON_LANGS

	List of languages (as two-letter-codes) to be included in the web interface. Should always contain
en.

	GLUON_WLAN_MESH

	Setting this to 11s or ibss will enable generation of matching images for devices which don’t
support both meshing modes, either at all (e.g. ralink and mediatek don’t support AP+IBSS) or in the
same firmware (ath10k-based 5GHz). Defaults to 11s.

Feature flags

With the addition of more and more features that interact in complex ways, it
has become necessary to split certain packages into multiple parts, so it is
possible to install just what is needed for a specific usecase. One example
is the package gluon-status-page-mesh-batman-adv: There are batman-adv-specific
status page components; they should only be installed when both batman-adv and
the status page are enabled, making the addition of a specific package for this
combination necessary.

With the ongoing modularization, e.g. for the purpose of supporting new
routing protocols, specifying all such split packages in site.mk would
soon become very cumbersome: In the future, further components like
respondd support or languages might be split off as separate packages,
leading to entangled package names like gluon-mesh-vpn-fastd-respondd or
gluon-status-page-mesh-batman-adv-i18n-de.

For this reason, we have introduced feature flags, which can be specified
in the GLUON_FEATURES variable. These flags allow to specify a set of features
on a higher level than individual package names.

Most Gluon packages can simply be specified as feature flags by removing the gluon-
prefix: The feature flag corresponding to the package gluon-mesh-batman-adv-15 is
mesh-batman-adv-15.

The file package/features in the Gluon repository (or
features in site feeds) can specify additional rules for deriving package lists
from feature flags, e.g. specifying both status-page and either mesh-batman-adv-14
or mesh-batman-adv-15 will automatically select the additional package
gluon-status-page-mesh-batman-adv. In the future, selecting the flags
mesh-vpn-fastd and respondd might automatically enable the additional
package gluon-mesh-vpn-fastd-respondd, and enabling status-page and
mesh-batman-adv-15 (or -14) with de in GLUON_LANGS could
add the package gluon-status-page-mesh-batman-adv-i18n-de.

In short, it is not necessary anymore to list all the individual packages that are
relevant for a firmware; instead, the package list is derived from a list of feature
flags using a flexible ruleset defined in the Gluon repo or site package feeds.
To some extent, it will even allow us to further modularize existing Gluon packages,
without necessitating changes to existing site configurations.

It is still possible to override such automatic rules using GLUON_SITE_PACKAGES
(e.g., -gluon-status-page-mesh-batman-adv to remove the automatically added
package gluon-status-page-mesh-batman-adv).

For convenience, there are two feature flags that do not directly correspond to a Gluon
package:

	web-wizard

Includes the gluon-config-mode-… base packages (hostname, geolocation and contact info),
as well as the gluon-config-mode-autoupdater (when autoupdater is in GLUON_FEATURES),
and gluon-config-mode-mesh-vpn (when mesh-vpn-fastd or mesh-vpn-tunneldigger are in
GLUON_FEATURES)

	web-advanced

Includes the gluon-web-… base packages (admin, network, WiFi config),
as well as the gluon-web-autoupdater (when autoupdater is in GLUON_FEATURES)

We recommend to use GLUON_SITE_PACKAGES for non-Gluon OpenWrt packages only and
completely rely on GLUON_FEATURES for Gluon packages, as it is shown in the
example site.mk.

Config mode texts

The community-defined texts in the config mode are configured in PO files in the i18n subdirectory
of the site configuration. The message IDs currently defined are:

	gluon-config-mode:welcome

	Welcome text on the top of the config wizard page.

	gluon-config-mode:pubkey

	Information about the public VPN key on the reboot page.

	gluon-config-mode:novpn

	Information shown on the reboot page, if the mesh VPN was not selected.

	gluon-config-mode:altitude-label

	Label for the altitude field

	gluon-config-mode:altitude-help

	Description for the usage of the altitude field

	gluon-config-mode:contact-help

	Description for the usage of the contact field

	gluon-config-mode:contact-note

	Note shown (in small font) below the contact field

	gluon-config-mode:hostname-help

	Description for the usage of the hostname field

	gluon-config-mode:geo-location-help

	Description for the usage of the longitude/latitude fields

	gluon-config-mode:reboot

	General information shown on the reboot page.

There is a POT file in the site example directory which can be used to create templates
for the language files. The command msginit -l en -i ../../docs/site-example/i18n/gluon-site.pot
can be used from the i18n directory to create an initial PO file called en.po if the gettext
utilities are installed.

Note

An empty msgstr, as is the default after running msginit, leads to
the msgid being printed as-is. It does not hide the whole text, as
might be expected.

Depending on the context, you might be able to use comments like
<!-- empty --> as translations to effectively hide the text.

Site modules

The file modules in the site repository is completely optional and can be used
to supply additional package feeds from which packages are built. The git repositories
specified here are retrieved in addition to the default feeds when make update
it called.

This file’s format is very similar to the toplevel modules file of the Gluon
tree, with the important different that the list of feeds must be assigned to
the variable GLUON_SITE_FEEDS. Multiple feed names must be separated by spaces,
for example:

GLUON_SITE_FEEDS='foo bar'

The feed names may only contain alphanumerical characters, underscores and slashes.
For each of the feeds, the following variables are used to specify how to update
the feed:

	PACKAGES_${feed}_REPO

	The URL of the git repository to clone (usually git:// or http(s)://)

	PACKAGES_${feed}_COMMIT

	The commit ID of the repository to use

	PACKAGES_${feed}_BRANCH

	Optional: The branch of the repository the given commit ID can be found in.
Defaults to the default branch of the repository (usually master)

These variables are always all uppercase, so for an entry foo in GLUON_SITE_FEEDS,
the corresponding configuration variables would be PACKAGES_FOO_REPO,
PACKAGES_FOO_COMMIT and PACKAGES_FOO_BRANCH. Slashes in feed names are
replaced by underscores to get valid shell variable identifiers.

Examples

site.mk

##	gluon site.mk makefile example

##	GLUON_FEATURES
#		Specify Gluon features/packages to enable;
#		Gluon will automatically enable a set of packages
#		depending on the combination of features listed

GLUON_FEATURES := \
	autoupdater \
	ebtables-filter-multicast \
	ebtables-filter-ra-dhcp \
	ebtables-limit-arp \
	mesh-batman-adv-15 \
	mesh-vpn-fastd \
	radvd \
	respondd \
	status-page \
	web-advanced \
	web-wizard

##	GLUON_SITE_PACKAGES
#		Specify additional Gluon/LEDE packages to include here;
#		A minus sign may be prepended to remove a packages from the
#		selection that would be enabled by default or due to the
#		chosen feature flags

GLUON_SITE_PACKAGES := haveged iwinfo

##	DEFAULT_GLUON_RELEASE
#		version string to use for images
#		gluon relies on
#			opkg compare-versions "$1" '>>' "$2"
#		to decide if a version is newer or not.

DEFAULT_GLUON_RELEASE := 0.6+exp$(shell date '+%Y%m%d')

Variables set with ?= can be overwritten from the command line

##	GLUON_RELEASE
#		call make with custom GLUON_RELEASE flag, to use your own release version scheme.
#		e.g.:
#			$ make images GLUON_RELEASE=23.42+5
#		would generate images named like this:
#			gluon-ff%site_code%-23.42+5-%router_model%.bin

GLUON_RELEASE ?= $(DEFAULT_GLUON_RELEASE)

Default priority for updates.
GLUON_PRIORITY ?= 0

Region code required for some images; supported values: us eu
GLUON_REGION ?= eu

Languages to include
GLUON_LANGS ?= en de

site.conf

-- This is an example site configuration for Gluon v2018.1.2
--
-- Take a look at the documentation located at
-- http://gluon.readthedocs.org/ for details.
--
-- This configuration will not work as is. You're required to make
-- community specific changes to it!
{
 -- Used for generated hostnames, e.g. freifunk-abcdef123456. (optional)
 -- hostname_prefix = 'freifunk-',

 -- Name of the community.
 site_name = 'Freifunk Alpha Centauri',

 -- Shorthand of the community.
 site_code = 'ffxx',

 -- 32 bytes of random data, encoded in hexadecimal
 -- This data must be unique among all sites and domains!
 -- Can be generated using: echo $(hexdump -v -n 32 -e '1/1 "%02x"' </dev/urandom)
 domain_seed = 'xx',

 -- Prefixes used within the mesh.
 -- prefix6 is required, prefix4 can be omitted if next_node.ip4
 -- is not set.
 prefix4 = '10.xxx.0.0/20',
 prefix6 = 'fdxx:xxxx:xxxx::/64',

 -- Timezone of your community.
 -- See http://wiki.openwrt.org/doc/uci/system#time_zones
 timezone = 'CET-1CEST,M3.5.0,M10.5.0/3',

 -- List of NTP servers in your community.
 -- Must be reachable using IPv6!
 ntp_servers = {'1.ntp.services.ffxx'},

 -- Wireless regulatory domain of your community.
 regdom = 'DE',

 -- Wireless configuration for 2.4 GHz interfaces.
 wifi24 = {
 -- Wireless channel.
 channel = 1,

 -- List of supported wifi rates (optional)
 -- Example removes 802.11b compatibility for better performance
 supported_rates = {6000, 9000, 12000, 18000, 24000, 36000, 48000, 54000},

 -- List of basic wifi rates (optional, required if supported_rates is set)
 -- Example removes 802.11b compatibility for better performance
 basic_rate = {6000, 9000, 18000, 36000, 54000},

 -- ESSID used for client network.
 ap = {
 ssid = 'alpha-centauri.freifunk.net',
 -- disabled = true, -- (optional)
 },

 mesh = {
 -- Adjust these values!
 id = 'ueH3uXjdp', -- usually you don't want users to connect to this mesh-SSID, so use a cryptic id that no one will accidentally mistake for the client WiFi
 mcast_rate = 12000,
 -- disabled = true, -- (optional)
 },
 },

 -- Wireless configuration for 5 GHz interfaces.
 -- This should be equal to the 2.4 GHz variant, except
 -- for channel.
 wifi5 = {
 channel = 44,
 ap = {
 ssid = 'alpha-centauri.freifunk.net',
 },
 mesh = {
 -- Adjust these values!
 id = 'ueH3uXjdp',
 mcast_rate = 12000,
 },
 },

 mesh = {
 vxlan = true,
 },

 -- The next node feature allows clients to always reach the node it is
 -- connected to using a known IP address.
 next_node = {
 -- anycast IPs of all nodes
 -- name = { 'nextnode.location.community.example.org', 'nextnode', 'nn' },
 ip4 = '10.xxx.0.xxx',
 ip6 = 'fdxx:xxxx:xxxx::xxxx',
 },

 -- Options specific to routing protocols (optional)
 -- mesh = {
 -- Options specific to the batman-adv routing protocol (optional)
 -- batman_adv = {
 -- Gateway selection class (optional)
 -- The default class 20 is based on the link quality (TQ) only,
 -- class 1 is calculated from both the TQ and the announced bandwidth
 -- gw_sel_class = 1,
 -- },
 -- },

 mesh_vpn = {
 -- enabled = true,
 mtu = 1312,

 fastd = {
 -- Refer to http://fastd.readthedocs.org/en/latest/ to better understand
 -- what these options do.

 -- List of crypto-methods to use.
 methods = {'salsa2012+umac'},
 -- configurable = true,
 -- syslog_level = 'warn',

 groups = {
 backbone = {
 -- Limit number of connected peers to reduce bandwidth.
 limit = 1,

 -- List of peers.
 peers = {
 peer1 = {
 key = 'xx',

 -- This is a list, so you might add multiple entries.
 remotes = {'ipv4 "xxx.somehost.invalid" port xxxxxx'},
 },
 peer2 = {
 key = 'xx',
 -- You can also omit the ipv4 to allow both connection via ipv4 and ipv6
 remotes = {'"xxx.somehost2.invalid" port xxxxx'},
 },
 },

 -- Optional: nested peer groups
 -- groups = {
 -- backbone_sub = {
 -- ...
 -- },
 -- ...
 -- },
 },
 -- Optional: additional peer groups, possibly with other limits
 -- backbone2 = {
 -- ...
 -- },
 },
 },

 bandwidth_limit = {
 -- The bandwidth limit can be enabled by default here.
 enabled = false,

 -- Default upload limit (kbit/s).
 egress = 200,

 -- Default download limit (kbit/s).
 ingress = 3000,
 },
 },

 autoupdater = {
 -- Default branch. Don't forget to set GLUON_BRANCH when building!
 branch = 'stable',

 -- List of branches. You may define multiple branches.
 branches = {
 stable = {
 name = 'stable',

 -- List of mirrors to fetch images from. IPv6 required!
 mirrors = {'http://1.updates.services.ffhl/stable/sysupgrade'},

 -- Number of good signatures required.
 -- Have multiple maintainers sign your build and only
 -- accept it when a sufficient number of them have
 -- signed it.
 good_signatures = 2,

 -- List of public keys of maintainers.
 pubkeys = {
 'xx', -- Alice
 'xx', -- Bob
 'xx', -- Mary
 },
 },
 },
 },
}

i18n/en.po

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Project-Id-Version: PACKAGE VERSION\n"
"PO-Revision-Date: 2016-02-04 14:28+0100\n"
"Last-Translator: David Lutz <kpanic@hirnduenger.de>\n"
"Language-Team: English\n"
"Language: en\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

msgid "gluon-config-mode:welcome"
msgstr ""
"Welcome to the setup wizard of your new Freifunk Alpha Centauri node. "
"Please fill out the following form and submit it."

msgid "gluon-config-mode:domain"
msgstr "Domain"

msgid "gluon-config-mode:domain-select"
msgstr ""
"Here you have the possibility of selecting the mesh domain in which your node "
"is placed. Please keep in mind that your router only connects with the nodes "
"of the selected domain"

msgid "gluon-config-mode:pubkey"
msgstr ""
"<p>This is your Freifunk node's public key. The node won't be able to "
"connect to the mesh VPN until the key has been registered on the Freifunk servers. "
"To register, send the key together with your node's name (<%=pcdata(hostname)%>) to "
"<a href=\"mailto:keys@alpha-centauri.freifunk.net?subject=<%= urlencode('Registration: ' .. hostname) %>&"
"body=<%= urlencode('# ' .. hostname .. '\n' .. pubkey) %>\">keys@alpha-centauri.freifunk.net."
"</p>"
"<div class=\"the-key\">"
" # <%= pcdata(hostname) %>"
"
"
"<%= pubkey %>"
"</div>"

msgid "gluon-config-mode:novpn"
msgstr ""
"<p>You have selected not to use the mesh VPN. "
"Your node will only be able to connect to the Freifunk network if other nodes in reach "
"already have a connection.</p>"

msgid "gluon-config-mode:reboot"
msgstr ""
"<p>Your node <%= pcdata(hostname) %> is currently rebooting and will "
"try to connect to other nearby Freifunk nodes after that. For more "
"information about the Freifunk community on Alpha Centauri, have a look at "
"our homepage.</p>"
"<p>To get back to this configuration interface, press the reset button for "
"3 seconds during normal operation. The device will then reboot into config "
"mode.</p>"
"<p>Have fun with your node and exploring of the Freifunk network!</p>"

msgid "gluon-config-mode:altitude-label"
msgstr "Altitude"

msgid "gluon-config-mode:altitude-help"
msgstr ""
"Specifying the altitude is optional and should only be done if a proper "
"value is known."

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-hostname/i18n/
msgid "gluon-config-mode:hostname-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-geo-location/i18n/
msgid "gluon-config-mode:geo-location-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-contact-info/i18n/
msgid "gluon-config-mode:contact-help"
msgstr ""

msgid "gluon-config-mode:contact-note"
msgstr ""

i18n/de.po

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Project-Id-Version: PACKAGE VERSION\n"
"PO-Revision-Date: 2015-03-19 20:28+0100\n"
"Last-Translator: Matthias Schiffer <mschiffer@universe-factory.net>\n"
"Language-Team: German\n"
"Language: de\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

msgid "gluon-config-mode:welcome"
msgstr ""
"Willkommen zum Einrichtungsassistenten für deinen neuen Alpha Centauri "
"Freifunk-Knoten. Fülle das folgende Formular deinen Vorstellungen "
"entsprechend aus und sende es ab."

msgid "gluon-config-mode:domain"
msgstr "Domäne"

msgid "gluon-config-mode:domain-select"
msgstr ""
"Hier hast du die Möglichkeit, die Mesh-Domäne, in der sich dein Knoten "
"befindet, auszuwählen. Bitte denke daran, dass sich dein Knoten nur mit den "
"Knoten der ausgewählten Domäne verbinden kann."

msgid "gluon-config-mode:pubkey"
msgstr ""
"<p>Dies ist der öffentliche Schlüssel deines Freifunk-Knotens. Erst nachdem "
"er auf den Servern des Freifunk-Projektes auf Alpha Centauri eingetragen wurde, "
"kann sich dein Knoten mit dem Mesh-VPN dort verbinden. Bitte "
"schicke dazu diesen Schlüssel und den Namen deines Knotens "
"(<%=pcdata(hostname)%>) an "
"<a href=\"mailto:keys@alpha-centauri.freifunk.net?subject=<%= urlencode('Anmeldung: ' .. hostname) %>&"
"body=<%= urlencode('# ' .. hostname .. '\n' .. pubkey) %>\">keys@alpha-centauri.freifunk.net."
"</p>"
"<div class=\"the-key\">"
" # <%= pcdata(hostname) %>"
"
"
"<%= pubkey %>"
"</div>"

msgid "gluon-config-mode:novpn"
msgstr ""
"<p>Du hast ausgewählt, kein Mesh-VPN "
"zu nutzen. Dein Knoten kann also nur dann eine Verbindung zum Freifunk-Netz "
"aufbauen, wenn andere Freifunk-Router in WLAN-Reichweite sind."
"</p>"

msgid "gluon-config-mode:reboot"
msgstr ""
"<p>Dein Knoten <%= pcdata(hostname) %> startet gerade neu und wird "
"anschließend versuchen, sich mit anderen Freifunkknoten in seiner Nähe zu "
"verbinden. Weitere Informationen zur "
"Alpha Centauri Freifunk-Community findest du auf "
"unserer Webseite.</p>"
"<p>Um zu dieser Konfigurationsseite zurückzugelangen, drücke im normalen "
"Betrieb für drei Sekunden den Reset-Button. Das Gerät wird dann im Config "
"Mode neustarten.</p>"
"<p>Viel Spaß mit deinem Knoten und der Erkundung von Freifunk!</p>"

msgid "gluon-config-mode:altitude-label"
msgstr "Höhe"

msgid "gluon-config-mode:altitude-help"
msgstr ""
"Die Höhenangabe ist optional und sollte nur gesetzt werden, wenn ein "
"exakter Wert bekannt ist."

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-hostname/i18n/
msgid "gluon-config-mode:hostname-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-geo-location/i18n/
msgid "gluon-config-mode:geo-location-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-contact-info/i18n/
msgid "gluon-config-mode:contact-help"
msgstr ""

msgid "gluon-config-mode:contact-note"
msgstr ""

modules

This file allows specifying additional repositories to use
when building gluon.
#
In most cases, it is not required so don't add it.

##	GLUON_SITE_FEEDS
#		for each feed name given, add the corresponding PACKAGES_* lines
#		documented below
#GLUON_SITE_FEEDS='my_own_packages'

##	PACKAGES_$feedname_REPO
#		the git repository from where to clone the package feed
#PACKAGES_MY_OWN_PACKAGES_REPO=https://github.com/.../my-own-packages.git

##	PACKAGES_$feedname_COMMIT
#		the version/commit of the git repository to clone
#PACKAGES_MY_OWN_PACKAGES_COMMIT=123456789aabcda1a69b04278e4d38f2a3f57e49

PACKAGES_$feedname_BRANCH
the branch to check out
#PACKAGES_MY_OWN_PACKAGES_BRANCH=my_branch

site-repos in the wild

This is a non-exhaustive list of site-repos from various communities:

	site-ffa [https://github.com/tecff/site-ffa] (Altdorf, Landshut & Umgebung)

	site-ffac [https://github.com/ffac/site] (Regio Aachen)

	site-ffbs [https://github.com/ffbs/site-ffbs] (Braunschweig)

	site-ffhb [https://github.com/FreifunkBremen/gluon-site-ffhb] (Bremen)

	site-ffda [https://git.darmstadt.ccc.de/ffda/site] (Darmstadt)

	site-ff3l [https://github.com/ff3l/site-ff3l] (Dreiländereck)

	site-ffeh [https://github.com/freifunk-ehingen/site-ffeh] (Ehingen)

	site-fffl [https://github.com/freifunk-flensburg/site-fffl] (Flensburg)

	site-ffgoe [https://github.com/freifunk-goettingen/site-ffgoe] (Göttingen)

	site-ffgt-rhw [https://github.com/ffgtso/site-ffgt-rhw] (Guetersloh)

	site-ffhh [https://github.com/freifunkhamburg/site-ffhh] (Hamburg)

	site-ffho [https://git.ffho.net/freifunkhochstift/ffho-site] (Hochstift)

	site-ffhgw [https://github.com/lorenzo-greifswald/site-ffhgw] (Greifswald)

	site-ffka [https://github.com/ffka/site-ffka] (Karlsruhe)

	site-ffki [https://git.freifunk.in-kiel.de/ffki-site/] (Kiel)

	site-fflz [https://github.com/freifunk-lausitz/site-fflz] (Lausitz)

	site-ffl [https://github.com/freifunk-leipzig/freifunk-gluon-leipzig] (Leipzig)

	site-ffhl [https://github.com/freifunk-luebeck/site-ffhl] (Lübeck)

	site-fflg [https://github.com/kartenkarsten/site-fflg] (Lüneburg)

	site-ffmd [https://github.com/FreifunkMD/site-ffmd] (Magdeburg)

	site-ffmwu [https://github.com/freifunk-mwu/sites-ffmwu] (Mainz, Wiesbaden & Umgebung)

	site-ffmyk [https://github.com/FreifunkMYK/site-ffmyk] (Mayen-Koblenz)

	site-ffmo [https://github.com/ffruhr/site-ffmo] (Moers)

	site-ffmg [https://github.com/ffruhr/site-ffmg] (Mönchengladbach)

	site-ffm [https://github.com/freifunkMUC/site-ffm] (München)

	site-ffhmue [https://github.com/Freifunk-Muenden/site-conf] (Münden)

	site-ffms [https://github.com/FreiFunkMuenster/site-ffms] (Münsterland)

	site-neuss [https://github.com/ffne/site-neuss] (Neuss)

	site-ffniers [https://github.com/ffruhr/site-ffniers] (Niersufer)

	site-ffndh [https://github.com/freifunk-nordheide/ffnordheide/tree/ffnh-lede/ffndh-site] (Nordheide)

	site-ffnw [https://git.nordwest.freifunk.net/ffnw-firmware/siteconf/tree/master] (Nordwest)

	site-ffrgb [https://github.com/ffrgb/site-ffrgb] (Regensburg)

	site-ffrn [https://github.com/Freifunk-Rhein-Neckar/site-ffrn] (Rhein-Neckar)

	site-ffruhr [https://github.com/ffruhr?utf8=✓&query=site] (Ruhrgebiet, Multi-Communities)

	site-ffs [https://github.com/freifunk-stuttgart/site-ffs] (Stuttgart)

	site-fftr [https://github.com/freifunktrier/site-fftr] (Trier)

x86 support

Gluon can run on normal x86 systems, for example virtual machines
and VPN boxes. By default, there is no WLAN support on x86 though.

Targets

The following targets for x86 images exist:

	x86-generic

	Generic x86 support with many different ethernet drivers; should run on
most x86 systems.

There are three images:

	generic (compressed “raw” image, can written to a disk directly or booted with qemu)

	virtualbox (VDI image)

	vmware (VMDK image)

These images only differ in the image file format, the content is the same. Therefore there is
only a single x86-generic sysupgrade image instead of three.

	x86-geode

	x86 image for Geode CPUs.

	x86-64

	64bit version of x86-generic.

Frequently Asked Questions

DNS does not work on the nodes

Gluon nodes will ignore the DNS server on the WAN port for everything except
the mesh VPN, which can lead to confusion.

All normal services on the nodes exclusively use the DNS server on the mesh
interface. This DNS server must be announced in router advertisements (using
radvd or a similar software) from one or more central servers in meshes based
on batman-adv. If your mesh does not have global IPv6 connectivity, you can setup
your radvd not to announce a default route by setting the default lifetime to 0;
in this case, the radvd is only used to announce the DNS server.

What is a good MTU on the mesh-vpn

Setting the MTU on the transport interface requires careful consideration, as
setting it too low will cause excessive fragmentation and setting it too high
may leave peers with a broken tunnel due to packet loss.

Consider these key values:

	Payload: Allow for the transport of IPv6 packets, by adhering to the minimum MTU
of 1280 Byte specified in RFC 2460
- and configure MSS clamping [http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.cookbook.mtu-mss.html] accordingly,
- and announce your link MTU via Router Advertisments and DHCP

	Encapsulation: Account for the overhead created by the configured mesh protocol
encapsulating the payload, which is
- up to 32 Byte (14 Byte Ethernet + 18 Byte batadv) for batman-adv compat v15 (v2014.0 and later)
- up to 28 Byte (14 Byte Ethernet + 14 Byte batadv) for batman-adv compat v14 (v2011.3.0 until and including v2013.4.0)

	PMTU: What MTU does the path between your gateway and each of its peers support?

For reference, the complete MTU stack looks like this:

[image: ../_images/mtu-diagram_v5.png]

Minimum MTU

Calculcate the minimum transport MTU by adding the encapsulation overhead to the
minimum payload MTU required. This is the lowest recommended value, since going
lower would cause unnecessary fragmentation for clients which respect the announced
link MTU.

Example: Our network currently uses batman-adv v15, it therefore requires up
to 32 Bytes of encapsulation overhead on top of the minimal link MTU required for
transporting IPv6.:

\ 1312 1294 1280 0
 \---------+-----------------+-------------+----------------------------------+
 \TAP | batadv v15 | Ethernet | Payload |
 \-------+-----------------+-------------+----------------------------------+
 \ ^
 |

 MTU_LOW = 1280 Byte + 14 Byte + 18 Byte = 1312 Byte

Maximum MTU

Calculating the maximum transport MTU is interesting, because it increases the
throughput, by allowing larger payloads to be transported, but also more difficult
as you have to take into account the tunneling overhead and each peers PMTU, which
varies between providers.
The underlying reasons are mostly PPPoE, Tunneling and IPv6 transition technologies
like DS-Lite.

Example: The peer with the smallest MTU on your network is behind DS-Lite and can
transport IPv4 packets up to 1436 Bytes in size. Your tunnel uses IPv4 (20 Byte),
UDP (8 Byte), Fastd (24 byte) and you require TAP (14 Byte) for Layer 2 (Ethernet)
Tunneling.:

1436 1416 1408 1384 1370 \
 +-------------------+--------+-----------------------+-------------+------\
 | IP | UDP | Fastd | TAP | bat\
 +-------------------+--------+-----------------------+-------------+--------\
 ^ \
 |

 MTU_HIGH = 1436 Byte - 20 Byte - 8 Byte - 24 Byte - 14 Byte = 1370 Byte

Conclusion

Determining the maximum MTU can be a tedious process, especially since the PMTU
of peers could change at any time. The general recommendation for maximized
compatibility is therefore the minimum MTU of 1312 Byte, which works well with
all combinations of IPv4, IPv6, batman-adv compat v14 and v15.

Config Mode

When in Config Mode a node will neither participate in the mesh nor connect
to the VPN using the WAN port. Instead, it’ll offer a web interface on the
LAN port to aid configuration of the node.

Whether a node is in Config Mode can be determined by a characteristic
blinking sequence of the SYS LED:

[image: ../_images/node_configmode.gif]

Activating Config Mode

Config Mode is automatically entered at the first boot. You can re-enter
Config Mode by pressing and holding the RESET/WPS button for about three
seconds. The device should reboot (all LEDs will turn of briefly) and
Config Mode will be available.

Port Configuration

In general, Config Mode will be offered on the LAN ports. However, there
are two practical exceptions:

	Devices with just one network port will run Config Mode on that port.

	Devices with PoE on the WAN port will run Config Mode on the WAN port instead.

Accessing Config Mode

Config Mode can be accessed at http://192.168.1.1. The node will offer DHCP
to clients. Should this fail, you may assign an IP from 192.168.1.0/24 to
your computer manually.

Autoupdater

Gluon contains an automatic update system which can be configured in the site configuration.

Building Images

By default, the autoupdater is disabled (as it is usually not helpful to have unexpected updates
during development), but it can be enabled by setting the variable GLUON_BRANCH when building
to override the default branch set in the set in the site configuration.

A manifest file for the updater can be generated with make manifest. A signing script (using
ecdsautils) can by found in the contrib directory. When creating the manifest, the
PRIORITY value may be defined by setting GLUON_PRIORITY on the command line or in site.mk.

GLUON_PRIORITY defines the maximum number of days that may pass between releasing an update and installation
of the images. The update probability will start at 0 after the release time declared in the manifest file
by the variable DATE and then slowly rise up to 1 when GLUON_PRIORITY days have passed. The autoupdater checks
for updates hourly (at a random minute of the hour), but usually only updates during its run between
4am and 5am, except when the whole GLUON_PRIORITY days and another 24 hours have passed.

GLUON_PRIORITY may be an integer or a decimal fraction.

If GLUON_RELEASE is passed to make explicitly or it is generated dynamically
in site.mk, care must be taken to pass the same GLUON_RELEASE to make manifest,
as otherwise the generated manifest will be incomplete.

Automated nightly builds

A fully automated nightly build could use the following commands:

git pull
(cd site && git pull)
make update
make clean
NUM_CORES_PLUS_ONE=$(expr $(nproc) + 1)
make -j$NUM_CORES_PLUS_ONE GLUON_TARGET=ar71xx-generic GLUON_BRANCH=experimental
make manifest GLUON_BRANCH=$GLUON_BRANCH GLUON_RELEASE=$GLUON_RELEASE
contrib/sign.sh $SECRETKEY output/images/sysupgrade/experimental.manifest

rm -rf /where/to/put/this/experimental
cp -r output/images /where/to/put/this/experimental

Infrastructure

We suggest to have following directory tree accessible via http:

firmware/
 stable/
 sysupgrade/
 factory/
 snapshot/
 sysupgrade/
 factory/
 experimental/
 sysupgrade/
 factory/

The server must be available via IPv6.

Command Line

These commands can be used on a node:

Update with some probability
autoupdater

Force update check, even when the updater is disabled
autoupdater -f

If fallback is true the updater will perform an update only if the timespan
PRIORITY days (as defined in the manifest) and another 24h have passed
autoupdater --fallback

WLAN configuration

Gluon allows to configure 2.4GHz and 5GHz radios independently. The configuration
may include any or all of the three networks “client” (AP mode), “mesh” (802.11s
mode) and “ibss” (adhoc mode), which can be used simultaneously (using “mesh” and
“ibss” at same time should be avoided though as weaker hardware usually can’t handle the additional
load). See Site configuration for details on the configuration.

Upgrade behaviour

For each of these networks, the site configuration may define a disabled flag (by
default, all configured networks are enabled). This flag is merely a default setting,
on upgrades the existing setting is always retained (as this setting may have been changed
by the user). This means that it is not possible to enable or disable an existing network
configurations during upgrades.

For the “mesh” and “ibss” networks, the default setting only has an effect if none
of the two has existed before. If a new configuration has been added for “mesh” or “ibss”,
while the other of the two has already existed before, the enabled/disabled state of the
existing configuration will also be set for the new configuration.

This allows upgrades to change from IBSS to 11s and vice-versa while retaining the
“wireless meshing is enabled/disabled” property configured by the user regardless
of the used mode.

During upgrades the wifi channel of the 2.4GHz and 5GHz radio will be restored to the channel
configured in the site.conf. If you need to preserve a user defined wifi channel during upgrades
you can configure this via the uci section gluon-core.wireless:

uci set gluon-core.@wireless[0].preserve_channels='1'

Keep in mind that nodes running wifi interfaces on custom channels can’t mesh with default nodes anymore!

Private WLAN

It is possible to set up a private WLAN that bridges the WAN port and is seperated from the mesh network.
Please note that you should not enable mesh_on_wan simultaneously.

The private WLAN can be enabled through the config mode if the package gluon-web-private-wifi is installed.
You may also enable a private WLAN using the command line:

RID=0
SSID="privateWLANname"
KEY="yoursecret1337password"

uci set wireless.wan_radio$RID=wifi-iface
uci set wireless.wan_radio$RID.device=radio$RID
uci set wireless.wan_radio$RID.network=wan
uci set wireless.wan_radio$RID.mode=ap
uci set wireless.wan_radio$RID.encryption=psk2
uci set wireless.wan_radio$RID.ssid="$SSID"
uci set wireless.wan_radio$RID.key="$KEY"
uci set wireless.wan_radio$RID.disabled=0
uci set wireless.wan_radio$RID.macaddr="$($(echo "lua -e print(require('gluon.util').generate_mac(3+4*$RID))"))"
uci commit
wifi

Please replace $SSID by the name of the WLAN and $KEY by your passphrase (8-63 characters).
If you have two radios (e.g. 2.4 and 5 GHz) you need to do this for radio0 and radio1.

It may also be disabled by running:

uci set wireless.wan_radio0.disabled=1
uci commit
wifi

Wired mesh (Mesh-on-WAN/LAN)

In addition to meshing over WLAN and VPN, it is also possible to
configure wired meshing over the LAN or WAN ports. This allows
nodes to be connected directly or over wireless bridges.

Mesh-on-WAN can be enabled in addition to the mesh VPN, so multiple nodes
in the same local network that is used as VPN uplink can also mesh directly.
Enabling Mesh-on-WAN should be avoided if the local network is also bridged with
a WLAN access point, as meshing over batman-adv causes large amounts of
multicast traffic, which will take up a lot of airtime.

Enabling Mesh-on-LAN replaces the normal “client network” function
of the LAN ports, as client network ports may never be connected (so care must be taken to always
enable Mesh-on-LAN before connecting two nodes’ LAN ports).

Wired mesh encapsulation

Since version 2018.1, Gluon supports encapsulating wired mesh traffic in
VXLAN [https://en.wikipedia.org/wiki/Virtual_Extensible_LAN], a new standard with
usecases similar to VLANs, but a much greater ID space of 24bit; in addition, VXLAN
packets pass through VLAN-aware switches without any special configuration.

Encapsulating mesh traffic has two advantages:

	By using a different VXLAN ID for each site and mesh domain, accidental
wired mesh connections between nodes of different domains will be prevented.
This has special importance when nodes migrate between domains automatically,
as currently possible through different site-specific packages.

	While batman-adv traffic does not interact with non-mesh traffic in the same wired
network in any way (so Gluon nodes can mesh over existing wired networks), this is
not the case for layer 3 mesh protocols like Babel. Encapsulating the traffic allows
to distinguish mesh traffic from unrelated packets.

As enabling VXLAN encapsulation will prevent wired mesh communication with old nodes
that do not support VXLAN yet, VXLANs can be enabled per-domain using the site configuration
setting mesh.vxlan. VXLAN is enabled by default in multidomain setups; in single-domain
site configurations, the mesh.vxlan setting is mandatory. We recommend to enable
VXLAN encapsulation in all new sites and domains.

Non-encapsulated (“legacy”) wired meshing will be removed in a future Gluon release.
We cannot give a concrete timeframe for the removal yet; a missing prerequisite is the
implementation of a robust migration path for existing deployments.

Configuration

Both Mesh-on-WAN and Mesh-on-LAN can be configured on the “Network” page
of the Advanced settings (if the package gluon-web-network is installed).

It is also possible to enable Mesh-on-WAN and Mesh-on-LAN by default by
adding mesh_on_wan = true and mesh_on_lan = true to site.conf.

Commandline

Enable Mesh-on-WAN:

uci set network.mesh_wan.disabled=0
uci commit network

Disable Mesh-on-WAN:

uci set network.mesh_wan.disabled=1
uci commit network

Enable Mesh-on-LAN:

uci set network.mesh_lan.disabled=0
for ifname in $(cat /lib/gluon/core/sysconfig/lan_ifname); do
 uci del_list network.client.ifname=$ifname
done
uci commit network

Disable Mesh-on-LAN:

uci set network.mesh_lan.disabled=1
for ifname in $(cat /lib/gluon/core/sysconfig/lan_ifname); do
 uci add_list network.client.ifname=$ifname
done
uci commit network

Please note that this configuration has changed in Gluon 2016.1. Using
the old commands on 2016.1 and later will break the corresponding options
in the Advanced settings.

DNS forwarder

A Gluon node can be configured to act as a DNS forwarder. Requests for the
next-node hostname(s) can be answered locally, without querying the upstream
resolver.

Note: While this reduces answer time and allows to use the next-node
hostname without upstream connectivity, this feature should not be used for
next-node hostnames that are FQDN when the zone uses DNSSEC.

One or more upstream resolvers can be configured in the dns.servers setting.
When next_node.name is set, A and/or AAAA records for the next-node IP
addresses are placed in the dnsmasq configuration.

dns = {
 servers = { '2001:db8::1', },
},

next_node = {
 name = { 'nextnode.location.community.example.org', 'nextnode', 'nn' },
 ip6 = '2001:db8:8::1',
 ip4 = '198.51.100.1',
}

Node monitoring

Gluon is capable of announcing information about each node to the mesh
and to neighbouring nodes. This allows nodes to learn each others hostname,
IP addresses, location, software versions and various other information.

Format of collected data

Information to be announced is currently split into three categories:

	nodeinfo

	In this category (mostly) static information is collected. If
something is unlikely to change without human intervention it should be
put here.

	statistics

	This category holds fast changing data, like traffic counters, uptime,
system load or the selected gateway.

	neighbours

	neighbours contains information about all neighbouring nodes of all
interfaces. This data can be used to determine the network topology.

All categories will have a node_id key. It should be used to
relate data of different catagories.

Accessing Node Information

There are two packages responsible for distribution of the information. For
one, information is distributed across the mesh using alfred [http://www.open-mesh.org/projects/alfred]. Information
between neighbouring nodes is exchanged using gluon-respondd.

alfred (mesh bound)

The package gluon-alfred is required for this to work.

Using alfred both categories are distributed within the mesh. In order to
retrieve the data you’ll need both a local alfred daemon and alfred-json [https://github.com/ffnord/alfred-json]
installed. Please note that at least one alfred daemon is required to run as
master.

The following datatypes are used:

	nodeinfo: 158

	statistics: 159

	neighbours: 160

All data is compressed using GZip (alfred-json can handle the decompression).

In order to retrieve statistics data you could run:

alfred-json -z -r 159
{
 "f8:d1:11:7e:97:dc": {
 "processes": {
 "total": 55,
 "running": 2
 },
 "idletime": 30632.290000000001,
 "uptime": 33200.07,
 "memory": {
 "free": 1660,
 "cached": 8268,
 "total": 29212,
 "buffers": 2236
 },
 "node_id": "f8d1117e97dc",
 "loadavg": 0.01
 },
 "90:f6:52:3e:b9:50": {
 "processes": {
 "total": 58,
 "running": 2
 },
 "idletime": 28047.470000000001,
 "uptime": 33307.849999999999,
 "memory": {
 "free": 2364,
 "cached": 7168,
 "total": 29212,
 "buffers": 1952
 },
 "node_id": "90f6523eb950",
 "loadavg": 0.34000000000000002
 }
}

You can find more information about alfred in its README [https://git.open-mesh.org/alfred.git/blob_plain/refs/heads/master:/README].

gluon-respondd

gluon-respondd allows querying neighbouring nodes for their information.
It is a daemon listening on the multicast address ff02::2:1001 on
UDP port 1001 on both the bare mesh interfaces and br-client. Unicast
requests are supported as well.

The supported requests are:

	nodeinfo, statistics, neighbours: Returns the data of single category uncompressed.

	GET nodeinfo, …: Returns the data of one or multiple categories (separated by spaces)
compressed using the deflate algorithm (without a gzip header). The data may
be decompressed using zlib and many zlib bindings using -15 as the window size parameter.

gluon-neighbour-info

The programm gluon-neighbour-info can be used to retrieve
information from other nodes.

gluon-neighbour-info -i wlan0 \
-p 1001 -d ff02:0:0:0:0:0:2:1001 \
-r nodeinfo

An optional timeout may be specified, e.g. -t 5 (default: 3 seconds). See
the usage information printed by gluon-neighbour-info -h for more information
about the supported arguments.

Adding a data provider

To add a provider, you need to install a shared object into /lib/gluon/respondd.
For more information, refer to the respondd README [https://github.com/freifunk-gluon/packages/blob/master/net/respondd/README.md]
and have a look the existing providers.

Multidomain Support

Preamble

There comes a time when a mesh network grows past sensible boundaries.
As broadcast traffic grows, mesh networks experience scaling issues and
using them becomes very unpleasant. An approach to solve this follows
the well-known “divide and conquer” paradigm and splits a large network
into multiple smaller networks. These smaller networks start with a
dedicated layer 2 network each, which are interconnected via their
gateways by layer 3 routing. Gluon is already field-tested handling a
single domain and the multidomain feature allows for the reconfiguration
of key parameters that decide which domain a node participates in,
without the need of a distinct set of firmware images for each mesh domain.

Overview

Multidomain support allows to build a single firmware with multiple,
switchable domain configurations. The nomenclature is as follows:

	site: an aggregate over multiple domains

	domain: mesh network with connectivity parameters that prevent
accidental bridging with other domains

	domain code: unique domain identifier

	domain name: pretty name for a domain code

By default Gluon builds firmware with a single domain embedded into
site.conf. To use multiple domains, enable it in site.mk:

GLUON_MULTIDOMAIN=1

In the site repository, create the domains/ directory, which will
hold your domain configurations. Each domain configuration file is named
after its primary domain_code, additional domain codes and names are
supported.

site/
|-- site.conf
|-- site.mk
|-- i18n/
|-- domains/
 |-- alpha_centauri.conf
 |-- beta_centauri.conf
 |-- gamma_centauri.conf

The domain configuration alpha_centauri.conf could look like this.

{
 domain_names = {
 alpha_centauri = 'Alpha Centauri'
 },

 -- more domain specific config follows below
}

In this example “Alpha Centauri” is the user-visible domain_name for the
domain_code alpha_centauri. Also note that the domain code
alpha_centauri matches the filename alpha_centauri.conf.

Additional domain codes/names can be added to domain_names, which
are treated as aliases for the their domain configuration. Aliases can
be used to offer more fine-grained and well-recognizable domain choices
to users. Having multiple aliases on a single domain is a helpful
precursor to splitting the domain into even smaller blocks.

Furthermore you have to specify the default_domain in the site.conf.
This domain is applied in following cases:

	When the config mode is skipped.

	When a domain is removed in a new firmware release, the default_domain
will be chosen then.

	When a user selects a wrong domain code via uci.

Please note, that this value is saved to uci, so changing the default_domain
value in the site.conf in a new firmware release only affects the actual
domain of a router, if and only if one of the above conditions matches.

Switching the domain

via commandline:

uci set gluon.core.domain="newdomaincode"
gluon-reconfigure
reboot

via config mode:

To allow switching the domain via config mode, config-mode-domain-select
has to be added to GLUON_FEATURES in the site.mk.

[image: image0]

Allowed site variables

Internally the site variables are merged from the site.conf and the
selected domain.conf, so the most variables are also allowed in
site.conf and in domain.conf. But there are some exceptions,
which do not make sense in a domain or site specific way. The following
sections give an overview over variables that are only usable in either
site or domain context.

site.conf only variables

	Used in as initial default values, when the firmware was just flashed
and/or the config mode is skipped, so they do not make sense in a
domain specific way:

	authorized_keys

	default_domain

	poe_passthrough

	mesh_on_wan

	mesh_on_lan

	single_as_lan

	setup_mode.skip

	autoupdater.branch

	mesh_vpn.enabled

	mesh_vpn.pubkey_privacy

	mesh_vpn.bandwidth_limit

	mesh_vpn.bandwidth_limit.enabled

	mesh_vpn.bandwidth_limit.ingress

	mesh_vpn.bandwidth_limit.egress

	Variables that influence the appearance of the config mode,
domain-independent because they are relevant before a domain was selected.

	config_mode.geo_location.show_altitude

	config_mode.hostname.optional

	config_mode.remote_login

	config_mode.remote_login.show_password_form

	config_mode.remote_login.min_password_length

	hostname_prefix

	mesh_vpn.fastd.configurable

	roles.default

	roles.list

	Specific to a firmware build itself:

	site_code

	site_name

	autoupdater.branches.*.name

	autoupdater.branches.*.good_signatures

	autoupdater.branches.*.pubkeys

	We simply do not see any reason, why these variables could be helpful
in a domain specific way:

	mesh_vpn.fastd.syslog_level

	wifi*.supported_rates

	wifi*.basic_rates

	timezone

	regdom

domain.conf only variables

	Obviously:

	domain_names

	a table of domain codes to domain names
domain_names = { foo = 'Foo Domain', bar = 'Bar Domain', baz = 'Baz Domain' }

	hide_domain

	prevents a domain name(s) from appearing in config mode, either
boolean or array of domain codes

	true, false

	{ 'foo', 'bar' }

	Because each domain is considered as an own layer 2 network, these
values should be different in each domain:

	next_node.ip4

	next_node.ip6

	next_node.name

	prefix6

	prefix4

	extra_prefixes6

	To prevent accidential bridging of different domains, all meshing
technologies should be seperated:

	domain_seed (wired mesh)

	must be a random value used to derive the vxlan id for wired meshing

	wifi*.ibss.ssid

	wifi*.ibss.bssid

	wifi*.mesh.id

	mesh_vpn.fastd.groups.*.peers.remotes

	mesh_vpn.fastd.groups.*.peers.key

	mesh_vpn.tunneldigger.brokers

	Clients consider WiFi networks sharing the same ESSID as if they were
the same L2 network and try to reconfirm and reuse previous
addressing. If multiple neighbouring domains shared the same ESSID,
the roaming experience of clients would degrade.

	wifi*.ap.ssid

	
	Some values should be only set in legacy domains and not in new domains.

	
	mesh.vxlan

	By default, this value is true. It should be only set to false
for one legacy domain, since vxlan prevents accidental wired
merges of domains. For old domains this value is still available
to keep compatibility between all nodes in one domain.

	next_node.mac

	For new domains, the default value should be used, since there is
no need for a special mac (or domain specific mac). For old domains
this value is still available to keep compatibility between all
nodes in one domain.

Example config

site.mk

##	gluon site.mk makefile example

##	GLUON_FEATURES
#		Specify Gluon features/packages to enable;
#		Gluon will automatically enable a set of packages
#		depending on the combination of features listed

GLUON_FEATURES := \
	autoupdater \
	ebtables-filter-multicast \
	ebtables-filter-ra-dhcp \
	ebtables-limit-arp \
	mesh-batman-adv-15 \
	mesh-vpn-fastd \
	radvd \
	respondd \
	status-page \
	web-advanced \
	web-wizard

##	GLUON_MULTIDOMAIN
#		Build gluon with multidomain support.

GLUON_MULTIDOMAIN=1

##	GLUON_SITE_PACKAGES
#		Specify additional Gluon/LEDE packages to include here;
#		A minus sign may be prepended to remove a packages from the
#		selection that would be enabled by default or due to the
#		chosen feature flags

GLUON_SITE_PACKAGES := haveged iwinfo

##	DEFAULT_GLUON_RELEASE
#		version string to use for images
#		gluon relies on
#			opkg compare-versions "$1" '>>' "$2"
#		to decide if a version is newer or not.

DEFAULT_GLUON_RELEASE := 0.6+exp$(shell date '+%Y%m%d')

Variables set with ?= can be overwritten from the command line

##	GLUON_RELEASE
#		call make with custom GLUON_RELEASE flag, to use your own release version scheme.
#		e.g.:
#			$ make images GLUON_RELEASE=23.42+5
#		would generate images named like this:
#			gluon-ff%site_code%-23.42+5-%router_model%.bin

GLUON_RELEASE ?= $(DEFAULT_GLUON_RELEASE)

Default priority for updates.
GLUON_PRIORITY ?= 0

Region code required for some images; supported values: us eu
GLUON_REGION ?= eu

Languages to include
GLUON_LANGS ?= en de

site.conf

{
 site_name = 'Centauri Mesh',
 site_code = 'centauri',
 default_domain = 'alpha_centauri',

 timezone = 'CET-1CEST,M3.5.0,M10.5.0/3',
 ntp_server = {'ntp1.example.org', 'ntp2.example.org'},
 regdom = 'DE',

 wifi24 = {
 mesh = {
 mcast_rate = 12000,
 },
 },

 wifi5 = {
 mesh = {
 mcast_rate = 12000,
 },
 },

 mesh_vpn = {
 mtu = 1312,

 fastd = {
 methods = {'salsa2012+umac'},
 },

 bandwidth_limit = {
 enabled = false,
 egress = 200, -- kbit/s
 ingress = 3000, -- kbit/s
 },
 },

 autoupdater = {
 branch = 'stable',

 branches = {
 stable = {
 name = 'stable',
 mirrors = {'http://update.example.org/stable/sysupgrade'},
 good_signatures = 2,
 pubkeys = {
 'xx', -- Alice
 'xx', -- Bob
 'xx', -- Mary
 },
 },
 },
 },
}

domains/alpha_centauri.conf

{
 -- multiple codes/names can be defined, the first one is the primary name
 -- additional aliases can be defined
 domain_names = {
 alpha_centauri = 'Alpha Centauri',
 rigil_kentaurus = 'Rigil Kentaurus',
 proxima_centauri = 'Proxima Centauri',
 },

 -- 32 byte random data in hexadecimal encoding
 -- This data must be unique among all sites and domains!
 -- Can be generated using: echo $(hexdump -v -n 32 -e '1/1 "%02x"' </dev/urandom)
 domain_seed = 'xx',

 -- unique network prefixes per domain
 prefix4 = '10.xxx.0.0/20',
 prefix6 = 'fdxx:xxxx:xxxx:xxxx::/64',

 next_node = {
 ip4 = '10.xxx.yyy.zzz',
 ip6 = 'fdxx:xxxx:xxxx:xxxx::xxxx',
 },

 wifi24= {
 ap = {
 ssid = "alpha-centauri.example.org",
 channel = 1,
 },
 mesh = {
 id = 'ueH3uXjdp', -- usually you don't want users to connect to this mesh-SSID, so use a cryptic id that no one will accidentally mistake for the client WiFi
 },
 },

 wifi5= {
 ap = {
 ssid = "alpha-centauri.example.org",
 channel = 44,
 },
 mesh = {
 id = 'ueH3uXjdp',
 },
 },

 mesh_vpn = {
 fastd = {
 groups = {
 backbone = {
 peers = {
 peer1 = {
 key = 'xx',
 remotes = {'"peer1.example.org" port xxxxx'},
 },
 peer2 = {
 key = 'xx',
 remotes = {'"peer2.example.org" port xxxxx'},
 },
 },
 },
 },
 },
 },
}

i18n/en.po

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Project-Id-Version: PACKAGE VERSION\n"
"PO-Revision-Date: 2016-02-04 14:28+0100\n"
"Last-Translator: David Lutz <kpanic@hirnduenger.de>\n"
"Language-Team: English\n"
"Language: en\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

msgid "gluon-config-mode:welcome"
msgstr ""
"Welcome to the setup wizard of your new Freifunk Alpha Centauri node. "
"Please fill out the following form and submit it."

msgid "gluon-config-mode:domain"
msgstr "Domain"

msgid "gluon-config-mode:domain-select"
msgstr ""
"Here you have the possibility of selecting the mesh domain in which your node "
"is placed. Please keep in mind that your router only connects with the nodes "
"of the selected domain"

msgid "gluon-config-mode:pubkey"
msgstr ""
"<p>This is your Freifunk node's public key. The node won't be able to "
"connect to the mesh VPN until the key has been registered on the Freifunk servers. "
"To register, send the key together with your node's name (<%=pcdata(hostname)%>) to "
"<a href=\"mailto:keys@alpha-centauri.freifunk.net?subject=<%= urlencode('Registration: ' .. hostname) %>&"
"body=<%= urlencode('# ' .. hostname .. '\n' .. pubkey) %>\">keys@alpha-centauri.freifunk.net."
"</p>"
"<div class=\"the-key\">"
" # <%= pcdata(hostname) %>"
"
"
"<%= pubkey %>"
"</div>"

msgid "gluon-config-mode:novpn"
msgstr ""
"<p>You have selected not to use the mesh VPN. "
"Your node will only be able to connect to the Freifunk network if other nodes in reach "
"already have a connection.</p>"

msgid "gluon-config-mode:reboot"
msgstr ""
"<p>Your node <%= pcdata(hostname) %> is currently rebooting and will "
"try to connect to other nearby Freifunk nodes after that. For more "
"information about the Freifunk community on Alpha Centauri, have a look at "
"our homepage.</p>"
"<p>To get back to this configuration interface, press the reset button for "
"3 seconds during normal operation. The device will then reboot into config "
"mode.</p>"
"<p>Have fun with your node and exploring of the Freifunk network!</p>"

msgid "gluon-config-mode:altitude-label"
msgstr "Altitude"

msgid "gluon-config-mode:altitude-help"
msgstr ""
"Specifying the altitude is optional and should only be done if a proper "
"value is known."

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-hostname/i18n/
msgid "gluon-config-mode:hostname-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-geo-location/i18n/
msgid "gluon-config-mode:geo-location-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-contact-info/i18n/
msgid "gluon-config-mode:contact-help"
msgstr ""

msgid "gluon-config-mode:contact-note"
msgstr ""

i18n/de.po

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Project-Id-Version: PACKAGE VERSION\n"
"PO-Revision-Date: 2015-03-19 20:28+0100\n"
"Last-Translator: Matthias Schiffer <mschiffer@universe-factory.net>\n"
"Language-Team: German\n"
"Language: de\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

msgid "gluon-config-mode:welcome"
msgstr ""
"Willkommen zum Einrichtungsassistenten für deinen neuen Alpha Centauri "
"Freifunk-Knoten. Fülle das folgende Formular deinen Vorstellungen "
"entsprechend aus und sende es ab."

msgid "gluon-config-mode:domain"
msgstr "Domäne"

msgid "gluon-config-mode:domain-select"
msgstr ""
"Hier hast du die Möglichkeit, die Mesh-Domäne, in der sich dein Knoten "
"befindet, auszuwählen. Bitte denke daran, dass sich dein Knoten nur mit den "
"Knoten der ausgewählten Domäne verbinden kann."

msgid "gluon-config-mode:pubkey"
msgstr ""
"<p>Dies ist der öffentliche Schlüssel deines Freifunk-Knotens. Erst nachdem "
"er auf den Servern des Freifunk-Projektes auf Alpha Centauri eingetragen wurde, "
"kann sich dein Knoten mit dem Mesh-VPN dort verbinden. Bitte "
"schicke dazu diesen Schlüssel und den Namen deines Knotens "
"(<%=pcdata(hostname)%>) an "
"<a href=\"mailto:keys@alpha-centauri.freifunk.net?subject=<%= urlencode('Anmeldung: ' .. hostname) %>&"
"body=<%= urlencode('# ' .. hostname .. '\n' .. pubkey) %>\">keys@alpha-centauri.freifunk.net."
"</p>"
"<div class=\"the-key\">"
" # <%= pcdata(hostname) %>"
"
"
"<%= pubkey %>"
"</div>"

msgid "gluon-config-mode:novpn"
msgstr ""
"<p>Du hast ausgewählt, kein Mesh-VPN "
"zu nutzen. Dein Knoten kann also nur dann eine Verbindung zum Freifunk-Netz "
"aufbauen, wenn andere Freifunk-Router in WLAN-Reichweite sind."
"</p>"

msgid "gluon-config-mode:reboot"
msgstr ""
"<p>Dein Knoten <%= pcdata(hostname) %> startet gerade neu und wird "
"anschließend versuchen, sich mit anderen Freifunkknoten in seiner Nähe zu "
"verbinden. Weitere Informationen zur "
"Alpha Centauri Freifunk-Community findest du auf "
"unserer Webseite.</p>"
"<p>Um zu dieser Konfigurationsseite zurückzugelangen, drücke im normalen "
"Betrieb für drei Sekunden den Reset-Button. Das Gerät wird dann im Config "
"Mode neustarten.</p>"
"<p>Viel Spaß mit deinem Knoten und der Erkundung von Freifunk!</p>"

msgid "gluon-config-mode:altitude-label"
msgstr "Höhe"

msgid "gluon-config-mode:altitude-help"
msgstr ""
"Die Höhenangabe ist optional und sollte nur gesetzt werden, wenn ein "
"exakter Wert bekannt ist."

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-hostname/i18n/
msgid "gluon-config-mode:hostname-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-geo-location/i18n/
msgid "gluon-config-mode:geo-location-help"
msgstr ""

Leave empty to use the default text, which can be found in:
package/gluon-config-mode-contact-info/i18n/
msgid "gluon-config-mode:contact-help"
msgstr ""

msgid "gluon-config-mode:contact-note"
msgstr ""

modules

This file allows specifying additional repositories to use
when building gluon.
#
In most cases, it is not required so don't add it.

##	GLUON_SITE_FEEDS
#		for each feed name given, add the corresponding PACKAGES_* lines
#		documented below
#GLUON_SITE_FEEDS='my_own_packages'

##	PACKAGES_$feedname_REPO
#		the git repository from where to clone the package feed
#PACKAGES_MY_OWN_PACKAGES_REPO=https://github.com/.../my-own-packages.git

##	PACKAGES_$feedname_COMMIT
#		the version/commit of the git repository to clone
#PACKAGES_MY_OWN_PACKAGES_COMMIT=123456789aabcda1a69b04278e4d38f2a3f57e49

PACKAGES_$feedname_BRANCH
the branch to check out
#PACKAGES_MY_OWN_PACKAGES_BRANCH=my_branch

Adding SSH public keys

By using the package gluon-authorized-keys it is possible to add
SSH public keys to an image to permit root login.

If you select this package, add a list of authorized keys to site.conf like this::

{
 authorized_keys = { 'ssh-rsa AAA.... user1@host',
 'ssh-rsa AAA.... user2@host' },
 hostname_prefix = ...
 ...

Existing keys in /etc/dropbear/authorized_keys will be preserved.

Roles

It is possible to define a set of roles you want to distinguish at backend side. One node can own one
role which it will announce via alfred inside the mesh. This will make it easier to differentiate
nodes when parsing alfred data. E.g to count only normal nodes and not the gateways
or servers (nodemap). A lot of things are possible.

For this the section roles in site.conf is needed:

roles = {
 default = 'node',
 list = {
 'node',
 'test',
 'backbone',
 'service',
 },
},

The strings to display in the web interface are configured per language in the
i18n/en.po, i18n/de.po, etc. files of the site repository using message IDs like
gluon-web-node-role:role:node and gluon-web-node-role:role:backbone.

The value of default is the role every node will initially own. This value should be part of list as well.
If you want node owners to change the defined roles via config-mode you can add the package
gluon-web-node-role to your site.mk.

The role is saved in gluon-node-info.system.role. To change the role using command line do:

uci set gluon-node-info.system.role="$ROLE"
uci commit

Please replace $ROLE by the role you want the node to own.

Mesh-VPN

Gluon integrates several OSI-Layer 2 tunneling protocols to
enable interconnects between local meshes and provide
internetwork access. Available protocols currently are:

	fastd

	L2TPv3 (via tunneldigger)

fastd is a lightweight userspace tunneling daemon, that
implements cipher suites that are specifically designed
to work well on embedded devices. It offers encryption
and authentication. Its primary drawback are the necessary
context-switches when forwarding packets.

L2TPv3 is an in-kernel tunneling protocol that performs well,
but offers no security properties by itself.
The brokering of the tunnel happens through tunneldigger,
its primary drawback being the lack of IPv6 support.

fastd

Configurable Cipher

From the site configuration fastd can be allowed to offer
toggleable encryption in the config mode with the intent to
increase throughput, although in practice the gain is minimal.

Site configuration:

	Install gluon-web-mesh-vpn-fastd in site.mk

	Set mesh_vpn.fastd.configurable = true in site.conf

Gateway configuration:

	Prepend the null cipher in fastd’s method list

Config Mode:
The resulting firmware will allow users to choose between secure (encrypted) and fast (unencrypted) transport.

[image: ../_images/fastd_mode.gif]
Unix socket:
To confirm whether the correct cipher is being used, fastds unix
socket can be interrogated, after installing for example socat.

opkg update
opkg install socat
socat - UNIX-CONNECT:/var/run/fastd.mesh_vpn.socket

Development Basics

Gluon’s source is kept in git repositories [https://github.com/freifunk-gluon] at GitHub.

Bug Tracker

The main repo [https://github.com/freifunk-gluon/gluon] does have issues enabled.

IRC

Gluon’s developers frequent #gluon on hackint. You’re welcome to join us!

Working with repositories

To update the repositories used by Gluon, just adjust the commit IDs in modules and
rerun

make update

make update also applies the patches that can be found in the directories found in
patches; the resulting branch will be called patched, while the commit specified in modules
can be refered to by the branch base.

After new patches have been commited on top of the patched branch (or existing commits
since the base commit have been edited or removed), the patch directories can be regenerated
using

make update-patches

If applying a patch fails because you have changed the base commit, the repository will be reset to the old patched branch
and you can try rebasing it onto the new base branch yourself and after that call make update-patches to fix the problem.

Always call make update-patches after making changes to a module repository as make update will overwrite your
commits, making git reflog the only way to recover them!

Development Guidelines

lua should be used instead of sh whenever sensible. The following criteria
should be considered:

	Is the script doing more than just executing external commands? if so, use lua

	Is the script parsing/editing json-data? If so, use lua for speed

	When using sh, use jsonfilter instead of json_* functions for speed

Code formatting may sound like a topic for the pedantic, however it helps if
the code in the project is formatted in the same way. The following rules
apply:

	use tabs instead of spaces

	trailing whitespaces must be eliminated

Adding support for new hardware

This page will give a short overview on how to add support
for new hardware to Gluon.

Hardware requirements

Having an ath9k (or ath10k) based WLAN adapter is highly recommended,
although other chipsets may also work. VAP (multiple SSID) support
is a requirement.

Adding profiles

The vast majority of devices with ath9k WLAN is based on the ar71xx target of LEDE.
If the hardware you want to add support for is ar71xx, adding a new profile
is sufficient.

Profiles are defined in targets/* in a shell-based DSL (so common shell
command syntax like if can be used).

The device command is used to define an image build for a device. It takes
two or three parameters.

The first parameter defines the Gluon profile name, which is used to refer to the
device and is part of the generated image name. The profile name must be same as
the output of the following command (on the target device), so the autoupdater
can work:

lua -e 'print(require("platform_info").get_image_name())'

While porting Gluon to a new device, it might happen that the profile name is un-
known. Best practise is to generate an image first by using an arbitrary value
and then executing the lua command on the device and use its output from then on.

The second parameter defines the name of the image files generated by LEDE. Usually,
it is also the LEDE profile name; for devices that still use the old image build
code, a third parameter with the LEDE profile name can be passed. The profile names
can be found in the image Makefiles in lede/target/linux/<target>/image/Makefile.

Examples:

device tp-link-tl-wr1043n-nd-v1 tl-wr1043nd-v1
device alfa-network-hornet-ub hornet-ub HORNETUB

Suffixes and extensions

By default, image files are expected to have the extension .bin. In addition,
the images generated by LEDE have a suffix before the extension that defaults to
-squashfs-factory and -squashfs-sysupgrade.

This can be changed using the factory and sysupgrade commands, either at
the top of the file to set the defaults for all images, or for a single image. There
are three forms with 0 to 2 arguments (all work with sysupgrade as well):

factory SUFFIX .EXT
factory .EXT
factory

When only an extension is given, the default suffix is retained. When no arguments
are given, this signals that no factory (or sysupgrade) image exists.

Aliases

Sometimes multiple models use the same LEDE images. In this case, the alias
command can be used to create symlinks and additional entries in the autoupdater
manifest for the alternative models.

Standalone images

On targets without per-device rootfs support in LEDE, the commands described above
can’t be used. Instead, factory_image and sysupgrade_image are used:

factory_image PROFILE IMAGE .EXT
sysupgrade_image PROFILE IMAGE .EXT

Again, the profile name must match the value printed by the aforementioned Lua
command. The image name must match the part between the target name and the extension
as generated by LEDE and is to be omitted when no such part exists.

Packages

The packages command takes an arbitrary number of arguments. Each argument
defines an additional package to include in the images in addition to the default
package sets defined by LEDE. When a package name is prefixed by a minus sign, the
packages are excluded instead.

The packages command may be used at the top of a target definition to modify
the default package list for all images, or just for a single device (when the
target supports per-default rootfs).

Configuration

The config command allows to add arbitary target-specific LEDE configuration
to be emitted to .config.

Notes

On devices with multiple WLAN adapters, care must also be taken that the primary MAC address is
configured correctly. /lib/gluon/core/sysconfig/primary_mac should contain the MAC address which
can be found on a label on most hardware; if it does not, /lib/gluon/upgrade/010-primary-mac
in gluon-core might need a fix. (There have also been cases in which the address was incorrect
even on devices with only one WLAN adapter, in these cases a LEDE bug was the cause).

Adding support for new hardware targets

Adding a new target is much more complex than adding a new profile. There are two basic steps
required for adding a new target:

Package adjustments

One package that may need adjustments for new targets is libplatforminfo (to be found in
packages/gluon/libs/libplatforminfo [https://github.com/freifunk-gluon/packages/tree/master/libs/libplatforminfo]).
If the new platform works fine with the definitions found in default.c, nothing needs to be done. Otherwise,
create a definition for the added target or subtarget, either by symlinking one of the files in the templates
directory, or adding a new source file.

On many targets, Gluon’s network setup scripts (mainly in the package gluon-core)
won’t run correctly without some adjustments, so better double check that everything is fine there (and the files
primary_mac, lan_ifname and wan_ifname in /lib/gluon/core/sysconfig/ contain sensible values).

Build system support

A definition for the new target must be created under targets, and it must be added
to targets/targets.mk. The GluonTarget macro takes one to three arguments:
the target name, the Gluon subtarget name (if the target has subtargets), and the
LEDE subtarget name (if it differs from the Gluon subtarget). The third argument
can be used to define multiple Gluon targets with different configuration for the
same LEDE target, like it is done for the ar71xx-tiny target.

After this, is should be sufficient to call make GLUON_TARGET=<target> to build the images for the new target.

Package development

Gluon packages are OpenWrt packages and follow the same rules described at https://openwrt.org/docs/guide-developer/packages.

Gluon package makefiles

As many packages share the same or a similar structure, Gluon provides a package/gluon.mk that
can be included for common definitions. This file replaces OpenWrt’s $(INCLUDE_DIR)/package.mk;
it is usually included as include ../gluon.mk from Gluon core packages, or as
include $(TOPDIR)../package/gluon.mk from feeds.

Provided macros

	GluonBuildI18N (arguments: <source directory>)

Converts the .po files for all enabled languages from the given source directory to
the binary .lmo format and stores them in $(PKG_BUILD_DIR)/i18n.

	GluonInstallI18N

Install .lmo files from $(PKG_BUILD_DIR)/i18n to /lib/gluon/web/i18n in the
package install directory.

	GluonSrcDiet (arguments: <source directory>, <destination directory>)

Copies a directory tree, processing all files in it using LuaSrcDiet. The directory
tree should only contain Lua files.

	GluonCheckSite (arguments: <source file>)

Intended to be used in a package postinst script. It will use the passed Lua
snippet to verify package-specific site configuration.

	BuildPackageGluon (replaces BuildPackage)

Extends the Package/<name> definition with common defaults, sets the package
install script to the common Gluon/Build/Install, and automatically creates
a postinst script using GluonCheckSite if a check_site.lua is found in the
package directory.

Default build steps

These defaults greatly reduce the boilerplate in each package, but they can also
be confusing because of the many implicit behaviors depending on files in the
package directory. If any part of Gluon/Build/Compile or Gluon/Build/Install
does not work as intended for a package, the compile and install steps can
always be replaced or extended.

Build/Compile is set to Gluon/Build/Compile by default, which will

	run OpenWrt standard default commands (Build/Compile/Default) if a src/Makefile
or src/CMakeLists.txt is found

	run GluonSrcDiet on all files in the luasrc directory

	run GluonBuildI18N if a i18n directory is found

Package/<name> defaults to Gluon/Build/Install for packages defined using
BuildPackageGluon, which will

	copy all files from $(PKG_INSTALL_DIR) into the package if $(PKG_INSTALL) is 1

	copy all files from files into the package

	copy all Lua files built from luasrc into the package

	installs $(PKG_BUILD_DIR)/respondd.so to /usr/lib/respondd/$(PKG_NAME).so if src/respondd.c exists

	installs compiled i18n .lmo files

Feature flags

Feature flags provide a convenient way to define package selections without
making it necessary to list each package explicitly.

The main feature flag definition file is package/features, but each package
feed can provide additional defintions in a file called features at the root
of the feed repository.

Each flag $flag without any explicit definition will simply include the package
with the name gluon-$flag by default. The feature definition file can modify
the package selection in two ways:

	The nodefault function suppresses default of including the gluon-$flag
package

	The packages function adds a list of packages (or removes, when package
names are prepended with minus signs) when a given logical expression
is satisfied

Example:

nodefault 'web-wizard'

packages 'web-wizard' \
 'gluon-config-mode-hostname' \
 'gluon-config-mode-geo-location' \
 'gluon-config-mode-contact-info'

packages 'web-wizard & (mesh-vpn-fastd | mesh-vpn-tunneldigger)' \
 'gluon-config-mode-mesh-vpn'

This will

	disable the inclusion of a (non-existent) package called gluon-web-wizard

	enable three config mode packages when the web-wizard feature is enabled

	enable gluon-config-mode-mesh-vpn when both web-wizard and one
of mesh-vpn-fastd and mesh-vpn-tunneldigger are enabled

Supported syntax elements of logical expressions are:

	& (and)

	| (or)

	! (not)

	parentheses

Upgrade scripts

Basics

After each sysupgrade (including the initial installation), Gluon will execute all scripts
under /lib/gluon/upgrade. These scripts’ filenames usually begin with a 3-digit number
specifying the order of execution. Note that the script files need to be executable.

To get an overview of the ordering of all scripts of all packages, the helper script contrib/lsupgrade.sh
in the Gluon repository can be used, which will print all upgrade scripts’ filenames and directories. If executed
on a TTY, the filename will be highlighted in green, the repository in blue and the package in red.

Best practices

	Most upgrade scripts are written in Lua. This allows using lots of helper functions provided
by Gluon, e.g. to access the site configuration or edit UCI configuration files.

	Whenever possible, scripts shouldn’t check if they are running for the first time, but just edit configuration
files to achieve a valid configuration (without overwriting configuration changes made by the user where desirable).
This allows using the same code to create the initial configuration and upgrade configurations on upgrades.

	If it is unavoidable to run different code during the initial installation, the sysconfig.gluon_version variable
can be checked. This variable is nil during the initial installation and contains the previously install Gluon
version otherwise.

Script ordering

These are some guidelines for the script numbers:

	0xx: Basic sysconfig setup

	1xx: Basic system setup (including basic network configuration)

	2xx: Wireless setup

	3xx: Advanced network and system setup

	4xx: Extended network and system setup (e.g. mesh VPN and next-node)

	5xx: Miscellaneous (everything not fitting into any other category)

	6xx .. 8xx: Currently unused

	9xx: Upgrade finalization

WAN support

As the WAN port of a node will be connected to a user’s private network, it
is essential that the node only uses the WAN when it is absolutely necessary.
There are two cases in which the WAN port is used:

	Mesh VPN (package gluon-mesh-vpn-fastd

	DNS to resolve the VPN servers’ addresses (package gluon-wan-dnsmasq)

After the VPN connection has been established, the node should be able to reach
the mesh’s DNS servers and use these for all other name resolution.

Routing tables

As a node may get IPv6 default routes both over the WAN and the mesh, Gluon
uses two routing tables for IPv6. As all normal traffic should go over the mesh,
the mesh routes are added to the default table (table 0). All routes on the WAN interface
are put into table 1 (see /lib/gluon/upgrade/110-network in gluon-core).

There is also an ip -6 rule which routes all IPv6 traffic with a packet mark with the
bit 1 set though table 1.

libpacketmark

libpacketmark is a library which can be loaded with LD_PRELOAD and will set the packet mark of all
sockets created by a process in accordance with the LIBPACKETMARK_MARK environment variable. This allows setting
the packet mark for processes which don’t support this themselves. The process must run as root (or at least
with CAP_NET_ADMIN) for this to work.

Unfortunately there’s no nice way to set the packet mark via iptables for outgoing packets. The iptables will
run after the packet has been created, to even when the packet mark is changed and the packet is re-routed, the
source address won’t be rewritten to the default source address of the newly chosen route. libpacketmark avoids
this issue as the packet mark will already be set when the packet is created.

gluon-wan-dnsmasq

To separate the DNS servers in the mesh from the ones on the WAN, the gluon-wan-dnsmasq package provides
a secondary DNS daemon which runs on 127.0.0.1:54. It will automatically use all DNS servers explicitly
configured in /etc/config/gluon-wan-dnsmasq or received via DNS/RA on the WAN port. It is important that
no DNS servers for the WAN interface are configured in /etc/config/network and that peerdns is set to 0
so the WAN DNS servers aren’t leaked to the primary DNS daemon.

libpacketmark is used to make the secondary DNS daemon send its requests over the WAN interface.

The package gluon-mesh-vpn-fastd provides an iptables rule which will redirect all DNS requests from processes running
with the primary group gluon-mesh-vpn to 127.0.0.1:54, thus making fastd use the secondary DNS daemon.

MAC addresses

Many devices don’t have enough unique MAC addresses assigned by the vendor
(in batman-adv, each mesh interface needs an own MAC address that must be unique
mesh-wide).

Gluon tries to solve this issue by using a hash of the primary MAC address as a
45 bit MAC address prefix. The resulting 8 addresses are used as follows:

	0: client0; WAN

	1: mesh0

	2: ibss0

	3: wan_radio0 (private WLAN); batman-adv primary address

	4: client1; LAN

	5: mesh1

	6: ibss1

	7: wan_radio1 (private WLAN); mesh VPN

gluon.site library

The gluon.site library allows convenient access to the site configuration
from Lua scripts. Example:

local site = require 'gluon.site'
print(site.wifi24.ap.ssid())

The site object in this example does not directly represent the site.conf data structure;
instead, it is wrapped in a way that makes it more convenient to access deeply nested elements.
To access the the underlying values, they must be unwrapped using the function call notation
(the () after site.wifi24.ap.ssid in the example).

The wrapper objects have two advantages over simple Lua tables:

	Accessing non-existing values is never an error: site.wifi24.ap.ssid() will simply
return nil if site.wifi24 or site.wifi24.ap do not exist

	Default values: A default value can be passed to the unwrapping function call:

print(site.wifi24.ap.ssid('Default'))

will return ‘Default’ instead of nil when the value is unset.

Note that nil values and unset values are equivalent in Lua.

A simple way to access the whole site configuration as a simple table
is to unwrap the top-level site object:

local site_table = site()

Controllers

Controllers live in /lib/gluon/web/controller. They define which pages (“routes”)
exist under the /cgi-bin/gluon path, and what code is run when these pages are requested.

Controller scripts usually start with a package declaration, followed by calls
to the entry function, which each define one route:

package 'gluon-web-admin'

entry({"admin"}, alias("admin", "info"), _("Advanced settings"), 10)
entry({"admin", "info"}, template("admin/info"), _("Information"), 1)

package defines the translation namespace for the titles of the defined
pages as well as the referenced views and models. The entry function expects 4
arguments:

	path: Components of the path to define a route for.

The above example defines routes for the paths admin and admin/info.

	target: Dispatcher for the route. See the following section for details.

	title: Page title (also used in navigation). The underscore function is used
to mark the strings as translatable for i18n-scan.pl.

	order: Sort index in navigation (defaults to 100)

Navigation indexes are automatically generated for each path level. Pages can be
hidden from the navigation by setting the hidden property of the node object
returned by entry:

entry({"hidden"}, alias("foo"), _("I'm hidden!")).hidden = true

Dispatchers

	alias (path, …): Redirects to a different page. The path components are
passed as individual arguments.

	call (func, …): Runs a Lua function for custom request handling. The given
function is called with the HTTP object and the template renderer as first
two arguments, followed by all additional arguments passed to call.

	template (view): Renders the given view. See Views.

	model (name): Displays and evaluates a form as defined by the given model. See the
Models page for an explanation of gluon-web models.

The HTTP object

The HTTP object provides information about the HTTP requests and allows to add
data to the reply. Using it directly is rarely necessary when gluon-web
models and views are used.

Useful functions:

	getenv (key): Returns a value from the CGI environment passed by the webserver.

	formvalue (key): Returns a value passed in a query string or in the content
of a POST request. If multiple values with the same name have been passed, only
the first is returned.

	formvaluetable (key): Similar to formvalue, but returns a table of all
values for the given key.

	status (code, message): Writes the HTTP status to the reply. Has no effect
if a status has already been sent or non-header data has been written.

	header (key, value): Adds an HTTP header to the reply to be sent to to
the client. Has no effect when non-header data has already been written.

	prepare_content (mime): Sets the Content-Type header to the given MIME
type, potentially setting additional headers or modifying the MIME type to
accommodate browser quirks

	write (data, …): Sends the given data to the client. If headers have not
been sent, it will be done before the data is written.

HTTP functions are called in method syntax, for example:

http:write('Output!')

The template renderer

The template renderer allows to render templates (views). The most useful functions
are:

	render (view, scope, pkg): Renders the given view, optionally passing a table
with additional variables to make available in the template. The passed package
defines the translation namespace.

	render_string (str, scope, pkg): Same as render, but the template is passed
directly instead of being loaded from the view directory.

The renderer functions are called in property syntax, for example:

renderer.render('layout')

Differences from LuCI

	Controllers must not use the module function to define a Lua module (gluon-web
will set up a proper environment for each controller itself)

	Entries are defined at top level, not inside an index function

	The alias dispatcher triggers an HTTP redirect instead of directly running
the dispatcher of the aliased route.

	The call dispatcher is passed a function instead of a string with a function
name.

	The cbi dispatcher of LuCI has been renamed to model.

	The HTTP POST handler support the multipart/form-data encoding only, so
enctype="multipart/form-data" must be included in all <form> HTML
elements.

	Other dispatchers like form are not provided.

Models

Models are defined in /lib/gluon/web/model. Each model defines one or more
forms to display on a page, and how the submitted form data is handled.

Let’s start with an example:

local f = Form(translate('Hostname'))

local s = f:section(Section)

local o = s:option(Value, 'hostname', translate('Hostname'))
o.default = uci:get_first('system', 'system', 'hostname')
function o:write(data)
 uci:set('system', uci:get_first('system', 'system'), 'hostname', data)
 uci:commit('system')
end

return f

The toplevel element of a model is always a Form, but it is also possible for
a model to return multiple forms, which are displayed one below the other.

A Form has one or more Sections, and each Section has different types
of options.

All of these elements have an id, which is used to identify them in the HTML
form and handlers. If no ID is given, numerical IDs will be assigned automatically,
but using explicitly named elements is often advisable (and it is required if a
form does not always include the same elements, i.e., some forms, sections or
options are added conditionally). IDs are hierarchical, so in the above example,
the Value would get the ID 1.1.hostname (value hostname in first section
of first form).

Classes and methods

	Form (title, description, id)

	Form:section (type, title, description, id)

Creates a new section of the given type (usually Section).

	Form:write ()

Is called after the form has beed submitted (but only if the data is valid). It
is called last (after all options’ write methods) and is usually used
to commit changed UCI packages.

The default implementation of write doesn’t do anything, but it can be
overridden.

	Section (usually instanciated through Form:section)

	Section:option (type, id, title, description)

Creates a new option of the given type. Option types:

	Value: simple text entry

	TextValue: multiline text field

	ListValue: radio buttons or dropdown selection

	DynamicList: variable number of text entry fields

	Flag: checkbox

Most option types share the same properties and methods:

	default: default value

	optional: value may be empty

	datatype: one of the types described in Data types

By default (when datatype is nil), all values are accepted.

	state: has one of the values FORM_NODATA, FORM_VALID and FORM_INVALID
when read in a form handler

An option that has not been submitted because of its dependencies will have
the state FORM_NODATA, FORM_INVALID if the submitted value is not valid
according to the set datatype, and FORM_VALID otherwise.

	data: can be read in form handlers to get the submitted value

	depends (self, option, value): adds a dependency on another option

The option will only be shown when the passed option has the given value. This
is mainly useful when the other value is a Flag or ListValue.

	depends (self, deps): adds a dependency on multiple other options

deps must be a table with options as keys and values as values. The option
will only be shown when all passed options have the corresponding values.

Multiple alternative dependencies can be added by calling depends repeatedly.

	value (self, value, text): adds a choice to a ListValue

	write (self, data): is called with the submitted value when all form data is valid.

Does not do anything by default, but can be overridden.

The default value, the value argument to depends and the output data always have
the same type, which is usually a string (or nil for optional values). Exceptions
are:

	Flag uses boolean values

	DynamicList uses a table of strings

Despite its name, the datatype setting does not affect the returned value type,
but only defines a validator the check the submitted value with.

For a more complete example that actually makes use of most of these features,
have a look at the model of the gluon-web-network package.

Data types

	integer: an integral number

	uinteger: an integral number greater than or equal to zero

	float: a number

	ufloat: a number greater than or equal to zero

	ipaddr: an IPv4 or IPv6 address

	ip4addr: an IPv4 address

	ip6addr: an IPv6 address

	wpakey: a string usable as a WPA key (either between 8 and 63 characters, or 64 hex digits)

	range (min, max): a number in the given range (inclusive)

	min (min): a number greater than or equal to the given minimum

	max (max): a number less than or equal to the given maximum

	irange (min, max): an integral number in the given range (inclusive)

	imin (min): an integral number greater than or equal to the given minimum

	imax (max): an integral number less than or equal to the given maximum

	minlength (min): a string with the given minimum length

	maxlength (max): a string with the given maximum length

Differences from LuCI

	LuCI’s SimpleForm and SimpleSection are called Form and Section, respectively

	Is it not possible to add options to a Form directly, a Section must always
be created explicitly

	Many of LuCI’s CBI classes have been removed, most importantly the Map

	The rmempty option attribute does not exist, use optional instead

	Only the described data types are supported

	Form handlers work completely differently (in particular, a Form’s handle
method should usually not be overridden in gluon-web)

Views

The template parser reads views from /lib/gluon/web/view. Writing own view
should be avoided in favour of using Models with their predefined views.

Views are partial HTML pages, with additional template tags that allow
to embed Lua code and translation strings. The following tags are defined:

	<% … %> evaluates the enclosed Lua expression.

	<%= … %> evaluates the enclosed Lua expression and prints its value.

	<%+ … %> includes another template.

	<%: … %> translates the enclosed string using the loaded i18n catalog.

	<%_ … %> translates the enclosed string without escaping HTML entities
in the translation. This only makes sense when the i18n catalog contains HTML code.

	<%# … %> is a comment.

All of these also come in the whitespace-stripping variants <%- and -%> that
remove all whitespace before or after the tag.

Complex combinations of HTML and Lua code are possible, for example:

<div>
 <% if foo then %>
 Content
 <% end %>
</div>

Variables and functions

Many call sites define additional variables (for example, model templates can
access the model as self and a unique element ID as id), but the following
variables and functions should always be available for the embedded Lua code:

	renderer: The template renderer

	http: The HTTP object

	request: Table containing the path components of the current page

	url (path): returns the URL for the given path, which is passed as a table of path components.

	attr (key, value): Returns a string of the form key="value"
(with a leading space character before the key).

value is converted to a string (tables are serialized as JSON) and HTML entities
are escaped. Returns an empty string when value is nil or false.

	include (template): Includes another template.

	node (path, …): Returns the controller node for the given page (passed as
one argument per path component).

Use node(unpack(request)) to get the node for the current page.

	pcdata (str): Escapes HTML entities in the passed string.

	urlencode (str): Escapes the passed string for use in an URL.

	translate, _translate, translatef and i18n: see Internationalization support

Internationalization support

General guidelines

	All config mode packages must be fully translatable, with complete English and German texts.

	All new expert mode packages must be fully translatable. English texts are required.

	German translations are recommended. Other supported languages, especially French, are
nice-to-have, but not required. If you don’t know a language well, rather leave the translation
blank, so it is obvious that there is no proper translation yet.

	Existing expert mode packages should be made translatable as soon as possible.

	The “message IDs” (which are the arguments to the translate function) should be the
English texts.

i18n support in Gluon

Internationalization support is available in all components (models, view and
controllers) of gluon-web-based packages. Strings are translated using the translate,
_translate and translatef functions (translate for static strings, translatef
for printf-like formatted string; _translate works the same as translate, but
will return nil instead of the original string when no translation is available).

In views, the special tags <%:...%> can be used to translate the contained string.

Example from the gluon-config-mode-geo-location package:

local share_location = s:option(Flag, "location", translate("Show node on the map"))

Note that translations are namespaced: each package will only use its own
translation strings by default. For this purpose, the package name must by
specified in a package’s controller. It is possible to access a different
translation package using the i18n function from models and view, which is
necessary when strings from the site configuration are used, or packages do not
have their own controller (which is the case for config mode wizard components).

local site_i18n = i18n 'gluon-site'
local msg = site_i18n._translate('gluon-config-mode:welcome')

Adding translation templates to Gluon packages

The i18n support is based on the standard gettext system. For each translatable package,
a translation template with extension .pot can be created using the i18n-scan.pl
script in the contrib directory:

cd package/gluon-web-mesh-vpn-fastd
mkdir i18n
cd i18n
../../../contrib/i18n-scan.pl ../files ../luasrc > gluon-web-mesh-vpn-fastd.pot

The same command can be run again to update the template.

In addition, the Makefile must be adjusted. Instead of LEDE’s default package.mk,
the Gluon version (../gluon.mk for core packages) must be used. The i18n files must be installed
and PKG_CONFIG_DEPENDS must be added:

...
include ../gluon.mk

PKG_CONFIG_DEPENDS += $(GLUON_I18N_CONFIG)
...
define Build/Compile
 $(call GluonBuildI18N,gluon-web-mesh-vpn-fastd,i18n)
endef

define Package/gluon-web-mesh-vpn-fastd/install
 ...
 $(call GluonInstallI18N,gluon-web-mesh-vpn-fastd,$(1))
endef
...

Adding translations

A new translation file for a template can be added using the msginit command:

cd package/gluon-web-mesh-vpn-fastd/i18n
msginit -l de

This will create the file de.po in which the translations can be added.

The translation file can be updated to a new template version using the msgmerge command:

msgmerge -U de.po gluon-web-mesh-vpn-fastd.pot

After the merge, the translation file should be checked for “fuzzy matched” entries where
the original English texts have changed. All entries from the translation file should be
translated in the .po file (or removed from it, so the original English texts are displayed
instead).

Adding support for new languages

A list of all languages supported by gluon-web can be found in package/gluon.mk.
New languages just need to be added to GLUON_SUPPORTED_LANGS, and a human-readable
language name must be defined.

Config Mode

The Config Mode consists of several modules that provide a range of different
condiguration options:

	gluon-config-mode-core

	This modules provides the core functionality for the config mode.
All modules must depend on it.

	gluon-config-mode-hostname

	Provides a hostname field.

	gluon-config-mode-autoupdater

	Informs whether the autoupdater is enabled.

	gluon-config-mode-mesh-vpn

	Allows toggling of mesh-vpn-fastd and setting a bandwidth limit.

	gluon-config-mode-geo-location

	Enables the user to set the geographical location of the node.

	gluon-config-mode-contact-info

	Adds a field where the user can provide contact information.

Writing Config Mode modules

Config mode modules are located at /lib/gluon/config-mode/wizard and
/lib/gluon/config-mode/reboot. Modules are named like 0000-name.lua and
are executed in lexical order. In the standard package set, the
order is, for wizard modules:

	0050-autoupdater-info

	0100-hostname

	0300-mesh-vpn

	0400-geo-location

	0500-contact-info

The reboot module order is:

	0100-mesh-vpn

	0900-msg-reboot

All modules are run in the gluon-web model context and have access to the same
variables as “full” gluon-web modules.

Wizards

Wizard modules must return a function that is provided with the wizard form and an
UCI cursor. The function can create configuration sections in the form:

return function(form, uci)
 local s = form:section(Section)
 local o = s:option(Value, "hostname", "Hostname")
 o.default = uci:get_first("system", "system", "hostname")
 o.datatype = "hostname"

 function o:write(data)
 uci:set("system", uci:get_first("system", "system"), "hostname", data)
 end

 return {'system'}
end

The function may return a table of UCI packages to commit after the individual
fields’ write methods have been executed. This is done to avoid committing the
packages repeatedly when multiple wizard modules modify the same package.

Reboot page

Reboot modules are simply executed when the reboot page is
rendered:

renderer.render_string("Hello World!")

gluon-client-bridge

This package provides a bridge (br-client) for connecting clients. It will
also setup a wireless interface, provided it is configured in site.conf.

site.conf

	wifi24.ap.ssid / wifi5.ap.ssid

	SSID for the client network

gluon-config-mode-domain-select

This package provides a drop-down list for the config mode to select the domain
the node will be placed in. If the selection has changed the upgrade scripts in
/lib/gluon/upgrade/ are triggered to update the nodes configuration.

Hiding domains could be useful for default or testing domains, which should not
be accidentally selected by a node operater.

domains/*.conf

	hide_domain : optional (defaults to false)

	
	false shows this domain in drop-down list

	true hides this domain

Example:

hide_domain = true

gluon-ebtables-filter-multicast

The gluon-ebtables-filter-multicast package filters out various kinds of
non-essential multicast traffic, as this traffic often constitutes a
disproportionate burden on the mesh network. Unfortunately, this breaks many useful services
(Avahi, Bonjour chat, …), but this seems unavoidable, as the current Avahi implementation is
optimized for small local networks and causes too much traffic in large mesh networks.

The multicast packets are filtered between the nodes’ client bridge (br-client) and mesh
interface (bat0) on output.

The following packet types are considered essential and aren’t filtered:

	ARP (except requests for/replies from 0.0.0.0)

	DHCP, DHCPv6

	ICMPv6 (except Echo Requests (ping) and Node Information Queries (RFC4620)

	IGMP

In addition, the following packet types are allowed to allow experimentation with
layer 3 routing protocols.

	Babel

	OSPF

	RIPng

The following packet types are also allowed:

	BitTorrent Local Peer Discovery (it seems better to have local peers for BitTorrent than sending everything through the internet)

gluon-ebtables-filter-ra-dhcp

The gluon-ebtables-filter-ra-dhcp package tries to prevent common
misconfigurations (i.e. connecting the client interface of a Gluon
node to a private network) from causing issues for either of the
networks.

The rules are the following:

	DHCP requests, DHCPv6 requests and Router Solicitations may only be sent from clients to the mesh, but aren’t forwarded
from the mesh to clients

	DHCP replies, DHCPv6 replies and Router Advertisements from clients aren’t forwarded to the mesh

gluon-ebtables-limit-arp

The gluon-ebtables-limit-arp package adds filters to limit the
amount of ARP requests client devices are allowed to send into the
mesh.

The limits per client device, identified by its MAC address, are
6 packets per minute and 1 per second per node in total.
A burst of up to 50 ARP requests is allowed until the rate-limiting
takes effect (see --limit-burst in ebtables(8)).

Furthermore, ARP requests for a target IP already present in the
batman-adv DAT cache are excluded from rate-limiting, in regard
to both counting and filtering, as batman-adv will be able
to respond locally without a burden for the mesh. Therefore, this
limiter should not affect popular target IP addresses, like those
of gateways or nameservers.

However it mitigates the impact on the mesh when a larger range of
its IPv4 subnet is being scanned, which would otherwise result in
a significant amount of ARP chatter, even for unused IP addresses.

gluon-ebtables-source-filter

The gluon-ebtables-source-filter package adds an additional layer-2 filter
ruleset to prevent unreasonable traffic entering the network via the nodes.
Unreasonable means traffic entering the mesh via a node which source IP does
not belong to the configured IP space.

You may first check if there is a certain proportion of unreasonable traffic,
before adding this package to the firmware image. Furthermore, you should not
use this package if some kind of gateway or upstream network is provided by
a device connected to the client port.

site.conf

	prefix4optional

	
	IPv4 subnet

	prefix6 :

	
	IPv6 subnet

	extra_prefixes6optional

	
	list of additional IPv6 subnets

Example:

prefix4 = '198.51.100.0/21',
prefix6 = '2001:db8:8::/64',
extra_prefixes6 = {
 '2001:db8:9::/64',
 '2001:db8:100::/60',
},

gluon-radv-filterd

This package drops all incoming router advertisements except for the
default router with the best metric according to B.A.T.M.A.N. advanced.

Note that advertisements originating from the node itself (for example
via gluon-radvd) are not affected and considered at all.

Selected router

The router selection mechanism is independent from the batman-adv gateway mode.
In contrast, the device originating the router advertisment could be any router
or client connected to the mesh, as radv-filterd captures all router
advertisements originating from it. All nodes announcing router advertisement
with a default lifetime greater than 0 are being considered as candidates.

In case a router is not a batman-adv originator itself, its TQ is defined by
the originator it is connected to. This lookup uses the batman-adv global
translation table.

Initially the router is the selected by choosing the candidate with the
strongest TQ. When another candidate can provide a better TQ metric it is not
picked up as the selected router until it will outperform the currently
selected router by X metric units. The hysteresis threshold is configurable
and prevents excessive flapping of the gateway.

“Local” routers

The package has functionality to select “local” routers, i.e. those connected
via cable or WLAN instead of via the mesh (technically: appearing in the
transtable_local), a fake TQ of 512 so that they are always preferred.
However, if used together with the gluon-ebtables-filter-ra-dhcp
package, these router advertisements are filtered anyway and reach neither the
node nor any other client. You currently have to disable the package or insert
custom ebtables rules in order to use local routers.

respondd module

This package also contains a module for respondd that announces the currently
selected router via the statistics.gateway6 property using its interface MAC
address. Note that this is different from the statistics.gateway property,
which contains the MAC address of the main B.A.T.M.A.N. adv slave interface of
the selected IPv4 gateway.

site.conf

	radv_filterd.thresholdoptional

	
	minimal difference in TQ value that another gateway has to be better than
the currently chosen gateway to become the new chosen gateway

	defaults to 20

Example:

radv_filterd = {
 threshold = 20,
}

gluon-web-admin

This package allows the user to set options like the password for ssh access
within config mode. You can define in your site.conf whether it should be
possible to access the nodes via ssh with a password or not and what the mimimum
password length must be.

site.conf

	config_mode.remote_login.show_password_form : optional

	
	true the password section in config mode is shown

	false the password section in config mode is hidden

	defaults to false

	config_mode.remote_login.min_password_length : optional

	
	sets the minimum allowed password length. Set this to 1 to disable the
length check.

	defaults to 12

Example:

config_mode = {
 remote_login = {
 show_password_form = true, -- default false
 min_password_length = 12
 }
}

gluon-web-logging

The gluon-web-logging package adds a new section to advanced settings
to allow GUI-based configuration of a remote syslog server.

Gluon 2018.1.2

Bugfixes

	Fix a bug leading to missing IPv6 addresses in respondd announcements
(#1523 [https://github.com/freifunk-gluon/gluon/issues/1523])

The pattern that was used to match addresses from /proc/net/if_inet6
did not expect interface indexes growing past two characters.

	Mark ipq806x target as broken for unstable client WiFi
(#1505 [https://github.com/freifunk-gluon/gluon/issues/1505])

Station connections to the QCA9880 radio on the TP-Link C2600s are frequently
disconnected, leading to an abysmal user experience.

	Fix button behaviour on FRITZ!Box 4020
(#1544 [https://github.com/freifunk-gluon/gluon/pull/1544])

Buttons were triggering an instant reboot into config mode, fix by setting
buttons to active low instead of active high.

	Prevent caching of redirects on config mode and status page
(#1530 [https://github.com/freifunk-gluon/gluon/issues/1530])

As the path to both config mode and status page were changed between versions
users could be affected by a redirect to a no more valid URL.

	batman-adv has received two bugfixes, which were backported [https://github.com/openwrt-routing/packages/commit/7bf62cc8b556b5046f9bbd37687376fe9ea175bb] from v2018.4

Other changes

	Linux kernel has been updated to v4.4.153

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory or high load due to memory pressure on weak hardware specially in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Optimizations in Gluon 2018.1 have significantly improved memory usage.
There are still known bugs leading to unreasonably high load that we hope to
solve in future releases.

Gluon 2018.1.1

Bugfixes

	Fix a bug leading to configuration loss on upgrade under certain circumstances
(#1496 [https://github.com/freifunk-gluon/gluon/issues/1496])

The issue can only occur when upgrading from 2018.1 and there are multiple
mirror entries in site.conf (specifically, an early failure for one of the
mirrors, e.g. during DNS resolution, followed by a successful upgrade from a
different mirror triggers the issue).

This is a regression in Gluon 2018.1.

	Fix next-node ARP issue
(#1488 [https://github.com/freifunk-gluon/gluon/issues/1488])

A routing table issue led to ARP requests being sent from the next-node IPv4 address, but with
a node-specific source MAC address. This could make the next-node IPv4 address unreachable.

This is a regression in Gluon 2018.1.

	Fix build on hosts with glibc 2.28

Fixed by various tool upgrades in LEDE (bison, e2fsutils, …)

Other changes

	Linux kernel has been updated to v4.4.148

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory or high load due to memory pressure on weak hardware specially in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Optimizations in Gluon 2018.1 have significantly improved memory usage.
There are still known bugs leading to unreasonably high load that we hope to
solve in future releases.

Gluon 2018.1

Important notes

This version changes the flash partition layout on some devices (TP-Link CPE/WBS 210/510). To avoid
upgrade failures, make sure to upgrade to Gluon 2017.1.8 or the latest Gluon 2016.2.x (unreleased)
before installing Gluon 2018.1.

Some of the following paragraphs describe so-called “feature flags”. This new concept is
explained in Feature flags.

Added hardware support

ar71xx-generic

	ALFA NETWORK

	AP121F

	AVM

	FRITZ!Box 4020

	OpenMesh

	A40

	A60

	OM2P v4

	OM2P-HS v4

	TP-Link

	Archer C59 v1 2

	CPE210 v2

ar71xx-nand

	ZyXEL

	NBG6716

ar71xx-tiny

	TP-Link

	TL-WA901ND v5

ipq806x 1 2

	TP-Link

	Archer C2600

ramips-mt7620 1 2

	GL Innovations

	GL-MT300A

	GL-MT300N

	GL-MT750

ramips-mt7628 1 2

	VoCore

	VoCore 2

ramips-rt305x 1 2

	A5

	V11

	D-Link

	DIR615 (D1, D2, D3, D4, H1)

	VoCore

	VoCore (8MB, 16MB)

sunxi 1

	LeMaker/SinoVoip

	Banana Pi (M1)

	1(1,2,3,4,5)

	New target

	2(1,2,3,4,5)

	Device or target does not support AP+IBSS mode: This device or target will not be built
when GLUON_WLAN_MESH is set to ibss.

New features

Multidomain support

When mesh networks grow too large, it becomes necessary to split them into
multiple independent mesh domains to allow the meshes to work with reasonable
performance. Formerly, the only way to achieve this with Gluon was to build
a separate set of firmware images for each domain.

With Gluon 2018.1, multidomain firmwares can be used to achieve the same,
using only a single site configuration that is basis for several different
domain-specific configurations. The feature is explained in detail in
Multidomain Support.

Wired mesh encapsulation

Gluon now supports encapsulating wired mesh traffic (Mesh on LAN/WAN) in
VXLAN [https://en.wikipedia.org/wiki/Virtual_Extensible_LAN].
See Wired mesh (Mesh-on-WAN/LAN) for details on this feature.

Router advertisement filtering

Similar to the builtin batman-adv gateway feature for IPv4, the gluon-radv-filterd package
(radv-filterd feature flag) allows to filter IPv6 router advertisements received from the mesh
so that only the RAs with the best routing metric (TQ) reach the clients, ensuring that
the “best” (topologically closest) gateway is chosen as the IPv6 default route, thereby
reducing gateway crosstalk.

At the moment, this feature only filters RAs forwarded to clients; the RAs handled on
the nodes themselves will be unfiltered, so the nodes will still use arbitrary default
gateways.

IGMP/MLD segmentation

The IGMP/MLD segmentation feature previously provided by the gluon-ebtables-segment-mld
package has been extended and moved into the Gluon core; it does not exist as a separate package
anymore.

Filtering IGMP/MLD queries directed towards the mesh ensures that each node becomes the multicast querier
for its own clients (unless there are other multicast-aware switches connected to the node), rather
than electing a single, basically arbitrary node in the mesh to become the querier. Overall,
this should significantly improve the reliablity of multicast in the mesh. This is especially
important for IPv6, as the IPv6 Neighbour Discovery Protocol (NDP) is based on local multicast.

See also the documentation of the site.conf mesh section.

gluon-ebtables-limit-arp

The gluon-ebtables-limit-arp (ebtables-limit-arp feature flag) package adds filters to limit the
rate of ARP requests client devices are allowed to send into the mesh.

Certain client applications are known to generate a significant amount of such ARP requests and
are reportedly becoming more and more common. Without this package, such clients are one
known cause for mesh wide load and congestion problems (see also the Known issues
section below).

Because of this package’s implementation, which relies on frequent dynamic updates
- something ebtables does not perform well at - it is not included by default, as it can
cause unnecessary load. Feedback, especially with a close look on load and congestion on
nodes with a large number of changing client devices, is very much welcome. Depending on the
feedback, we might enable this feature by default in a future release.

Public key in respondd data (optional)

If desired, the fastd public key of a node can be included in the respondd nodeinfo data,
faciliating the correlations of VPN peers and nodes. As the VPN key is transmitted unencrypted
in the fastd handshake, this would theoretically allow an ISP to determine which nodes
are operated behind which internet line. Therefore, this feature must be enabled explicitly
by setting mesh_vpn.pubkey_privacy to false in site.conf.

B.A.T.M.A.N. V (experimental)

When using batman-adv compat 15, it is now possible to switch to the new routing
algorithm B.A.T.M.A.N. V (while the old algorithm is called B.A.T.M.A.N. IV) by
setting mesh.batman_adv.routing_algo to "BATMAN_V". Note that the new routing
algorithm is not backwards-compatible, so nodes using different algorithms can
not interoperate.

Site changes

site.mk

	Due to improved package dependency handling, the packages
gluon-config-mode-core and gluon-setup-mode do not need
to be listed explicitly in site.mk anymore; they will be
pulled in implicitly.

	Including the ebtables-limit-arp feature flag is recommended. Please note
the abovementioned caveats on this feature.

	We recommend to use GLUON_FEATURES for all Gluon packages, and rely on
GLUON_SITE_PACKAGES for non-Gluon (OpenWrt) packages only, as explained
in Feature flags.

	The GLUON_ATH10K_MESH variable was renamed to GLUON_WLAN_MESH.

site.conf

When updating a site configuration from Gluon 2017.1.x, the following changes
must be made:

	domain_seed = 'xx',

These 32 bytes of random data (encoded in hexadecimal) are used to seed a number
of site/domain specific random values that must be the same on all nodes of the
same mesh, but different for different meshes. The following command
can be used to generate such a random value:

echo $(hexdump -v -n 32 -e '1/1 "%02x"' </dev/urandom)

In multidomain setups, repeat this command for each domain.

At this time, only the VXLAN ID for wired meshing is derived from the domain seed.

	mesh = {
 vxlan = true, -- or false
 -- ...
},

In single domain setups, the new mesh.vxlan option is mandatory. It should be set to true in new
meshes; existing setups should set it to false to retain compatibility with older versions of Gluon.

In multidomain setups, mesh.vxlan defaults to true and does not need to be set explicitly.
It can still be set to false for individual domains that should allow wired meshing with existing
setups, which is also useful for migrating an existing mesh to a multidomain-capable firmware.

	Password change form

The password change form in the “Advanced settings” is not shown by default anymore, as SSH keys are
the recommended means of authentication. It is still possible to set a password via SSH while in
config mode.

Set

config_mode = {
 remote_login = {
 show_password_form = true,
 -- ...
 },
 -- ...
},

to restore the old behaviour.

When shown, the password form requires a minimum password length of 12 characters now. This requirement
can be modified using the config_mode.remote_login.min_password_length setting.

	Next-node hostnames

The builtin DNS resolver of Gluon can be configured to resolve a next-node hostname to the
next-node IP address without querying an upstream DNS server. Since Gluon v2018.1, multiple
names can be specified. Old configurations setting next_node.name to a string must be
updated to provide an array of strings instead:

next_node = {
 name = { 'nextnode.location.community.example.org' },
 -- ...
},

i18n

It is now possible to override a few labels and descriptions in the configuration
wizard. The available message IDs are listed in Config mode texts.

These new i18n strings are optional; leaving them empty or unset will retain the
default texts.

Internals

Status page rewrite

The status page has been rewritten to simplify the code and reduce its size. Rather than
having a static frontend and retrieving all information via JavaScript, all static information
in the status page is now generated on the node, and JavaScript is only used for dynamic data.

Many status page API endpoints have been removed; for all remaining endpoints, CORS
(Cross-Origin Resource Sharing) has been disabled, as it led to a privacy issues:
malicious websites could access the API via cross-site scripting, determining which
node a user was connected to.

The removal of CORS breaks compatibility with the node switching feature of the
old status page implementation: In the new status page, switching to another node will
reload the whole status page from the target node, while the old implementation would
only switch to another backend host. While this will facilitate future updates, as
frontend and backend always come from the same node and no stable API needs to be maintained,
it prevents switching from the old status page to nodes running the new version.

To achieve all this, the status page was ported to the gluon-web framework. The new status page
also makes use of Gluon’s usual i18n facilities now. In addition, the gluon-web-model
package was split out of the gluon-web core package, as model support is only required
for config mode packages, but not for the new status page.

i18n namespaces

In earlier version of Gluon, all gluon-web (formerly LuCI) packages shared the same i18n namespace,
so independent packages could override each others translations (with an arbitrary translation of
the same string “winning”). This issue has been solved by giving each package its own translation
namespace, which is defined by the package directive in a package’s controller. It is still
possible to access a different i18n namespace (e.g. gluon-web base or site translations), which is
described in Internationalization support.

Package Makefile cleanup

The Makefiles of the individual Gluon packages have been cleaned up significantly by moving a
lot of boilerplate code to package/gluon.mk. The new features of package/gluon.mk are
explained in detail in Package development.

Site checker

	New JSON/Lua path specification

The old string-based path specifications in site check scripts (e.g. 'autoupdater.branch')
have been replaced with arrays ({'autoupdater', 'branch'}). This will implicitly ensure that
autoupdater is a table when it exists (simplifying checks for deep structures), and it makes it easier
to specify paths with variable components (by referencing a variable as an array element).

	Alternatives

The site check library has gained support for alternatives. It is now possible to check
if a configuration satisfies one of multiple checks:

-- foo can be a boolean or a string!
alternatives(function()
 need_boolean({'foo'})
end, function()
 need_string({'foo'})
end)

As many branches (functions) as necessary can be passed to a single alternatives call, which will succeed when
at least one of the branches succeeds.

batman-adv multicast optimizations

After various extra rounds of testing and fixes, the batman-adv (compat 15) multicast optimizations were
reenabled: knowledge about potential multicast listeners is gathered and distributed through the mesh again.

This is the next step towards the addition of the actual multicast distribution optimizations, which are
being prepared in #1357 [https://github.com/freifunk-gluon/gluon/pull/1357]. When finished, the optimizations
will help reduce the remaining Layer-2-specific network overhead, e.g. multicasted ICMPv6 messages.

No behaviour changes are expected yet, as the multicast sender side is still disabled.
Once the majority of the mesh network has been updated to Gluon 2018.1, it can be activated on
dedicated nodes by including #1357 [https://github.com/freifunk-gluon/gluon/pull/1357] in the firmware
build. Test feedback is very welcome.

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory or high load due to memory pressure on weak hardware specially in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Optimizations in Gluon 2018.1 have significantly improved memory usage.
There are still known bugs leading to unreasonably high load that we hope to
solve in future releases.

	Configuration loss on upgrade under certain circumstances
(#1496 [https://github.com/freifunk-gluon/gluon/issues/1496])

The issue can only occur when upgrading from 2018.1 and there are multiple
mirror entries in site.conf (specifically, an early failure for one of the
mirrors, e.g. during DNS resolution, followed by a successful upgrade from a
different mirror triggers the issue).

This is a regression in Gluon 2018.1.

	Next-node ARP issue
(#1488 [https://github.com/freifunk-gluon/gluon/issues/1488])

A routing table issue leads to ARP requests being sent from the next-node IPv4 address, but with
a node-specific source MAC address. This can make the next-node IPv4 address unreachable.

This is a regression in Gluon 2018.1.

Gluon 2017.1.8

Added hardware support

ar71xx-generic

	GL.iNet GL-AR750

	TP-Link Archer C7 v4

	Ubiquiti UniFi AC Mesh

ar71xx-tiny

	TP-Link TL-WR940N v6

Bugfixes

	Fix refcounting issue in batman-adv leading to hangs on interface restarts
(#1258 [https://github.com/freifunk-gluon/gluon/issues/1258])

This fix applied to both batman-adv compat 14 (legacy) and 15.

	Various batman-adv bugfixes have been backported
(f5b3c0c3bc7e [https://github.com/freifunk-gluon/gluon/commit/f5b3c0c3bc7e795b4b544cbaa49e9c6ca7581ce9] and
5947ba300e50 [https://github.com/freifunk-gluon/gluon/commit/5947ba300e50726a8af38fb115b834172780ab26],
fixing
#1321 [https://github.com/freifunk-gluon/gluon/issues/1321],
#1380 [https://github.com/freifunk-gluon/gluon/issues/1380],
#1382 [https://github.com/freifunk-gluon/gluon/issues/1382],
#1419 [https://github.com/freifunk-gluon/gluon/issues/1419]
and a number of other minor issues)

The listed bugs could lead to high rates of batman-adv management traffic
(causing considerable load), trigger warnings about packet checksum failues
in certain non-standard interface configurations, and possibly other issues.

Other changes

	Linux kernel has been updated to v4.4.129 (LEDE/81573ea25924 [https://git.openwrt.org/?p=openwrt/openwrt.git;a=commit;h=81573ea259247f1c6c1a7a490de174d0a6c48a64])

	The description of the “contact information” field in the configuration wizard
has been extended with regard to the EU General Data Protection Regulation (GDPR)
(fd355cf0ef7b [https://github.com/freifunk-gluon/gluon/commit/fd355cf0ef7ba0d1c9137bfb8fd76e87ad5d1aba])

The mandatory site option for the contact information field has been removed.

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory on weak hardware in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Gluon 2017.1.7

Bugfixes

	Fix boot failure on many Ubiquiti devices
(#1370 [https://github.com/freifunk-gluon/gluon/issues/1370])

A kernel update in Gluon 2017.1.6 led to boot failures on Ubiquiti Airmax M2/M5
(NanoStation, Bullet, etc.) if the device had been running AirOS 5.6 before
installing Gluon/OpenWrt. The XW hardware revision is unaffected.

While the root cause is a bug in Ubiquiti’s bootloader, the issue is mitigated in
Gluon 2017.1.7.

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory on weak hardware in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Gluon 2017.1.6

Bugfixes

	Remove broken DNS cache feature
(#1362 [https://github.com/freifunk-gluon/gluon/issues/1362])

It was found that dnsmasq does not handle all answer records
equally. In particular, its cached answers are missing DNSKEY and DS
records, breaking DNSSEC validation on clients.

Nodes can still resolve the next-node hostname locally and will continue to
work as DNS forwarders. The DNS cache feature may return if dnsmasq is fixed
or if we switch to a different resolver.

	Ensure that corefiles are stored in /tmp rather than cluttering the root
filesystem
(00df8b76e54c [https://github.com/freifunk-gluon/gluon/commit/00df8b76e54c9bb89299df4b2ec49e972046d6b6])

Nodes upgrades from Gluon v2016.2.x or earlier did not set kernel.core_pattern
correctly, leading to corefiles being stored in the current directory (usually
/ for system services) in the case of crashes.

This is a regression introduced in Gluon v2017.1.

	Only request a single IPv6 address instead of a prefix on the WAN interface
(5db54ba78c3 [https://github.com/freifunk-gluon/gluon/commit/5db54ba78c3e245f06e4a407371608f6cb247b49])

	Fix signal graph on status page when there are many neighbours
(packages/d1e0b6e0bdae [https://github.com/freifunk-gluon/packages/commit/d1e0b6e0bdaea14d8b9425cee6ca83087be1a905])

	Fix config files managed by opkg not being saved on sysupgrades on ar71xx-tiny
(LEDE/17c0362178ca [https://git.openwrt.org/?p=openwrt/openwrt.git;a=commit;h=17c0362178caf837680a4631b8d0de94e5393448],
LEDE/75be005e8bdc [https://git.openwrt.org/?p=openwrt/openwrt.git;a=commit;h=75be005e8bdcbf86f9ad167a8737126dda98a444])

	Fix kernel crash in batman-adv-14
(#1358 [https://github.com/freifunk-gluon/gluon/issues/1358])

Starting with Gluon v2017.1, respondd could trigger a kernel crash caused by
a use-after-free in batman-adv-14, in particular after a gateway disappeared.

batman-adv-15 is not affected.

	Increase bridge multicast querier timeout (“robustness”) to avoid
“querier appeared/disappeared” log spam by batman-adv in the presence of
an external querier
(e305a8c01917 [https://github.com/freifunk-gluon/gluon/commit/e305a8c019179472dbfc6fccea6c87cf40c08a75])

	Fix “broken pipe” log spam caused by the status page
(883c32f2f1dc [https://github.com/freifunk-gluon/gluon/commit/883c32f2f1dc368626069865c07a5701e3e9bcae])

	Reduce memory limit of WLAN packet queues to 256KB on devices with small RAM
(e63c6ca01f50 [https://github.com/freifunk-gluon/gluon/commit/e63c6ca01f50c96d76e5570faa290617a8a312b4])

Will hopefully make out-of-memory crashes in busy meshes less likely.

	Improve image validation for TP-Link CPE/WBS 210/510 and make it ready for
future images
(LEDE/6577fe2198f5 [https://git.openwrt.org/?p=openwrt/openwrt.git;a=commit;h=6577fe2198f5c75acb1dba789941d96a036f4dae])

Future OpenWrt/Gluon images will move the image metadata (“support-list”) of
the CPE/WBS 210/510 images to a different offset. Make sysupgrade ready
to allow installing such images.

This change was also backported to Gluon v2016.2.x to allow direct updates
to future Gluon master versions without installing v2017.1.x first.

	Sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
have disappeared with the latest updates
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Frequent reboots due to out-of-memory on weak hardware in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Gluon 2017.1.5

Added hardware support

ar71xx-generic

	TP-Link TL-WR1043N v5

ramips-mt7621

	Ubiquiti EdgeRouter-X

	Ubiquiti EdgeRouter-X SFP

Bugfixes

	Fix build with empty site/modules
(#1262 [https://github.com/freifunk-gluon/gluon/issues/1262])

	Fix Ethernet stalls at high throughput on certain devices
(#1101 [https://github.com/freifunk-gluon/gluon/issues/1101])

	Update Tunneldigger to support connections with servers running newer kernel
versions (9ed6ff752eb7 [https://github.com/freifunk-gluon/gluon/commit/9ed6ff752eb7972d90b138197641f12eeb4572fb])

	Fix batman-adv Bridge Loop Avoidance (BLA) with gluon-ebtables-filter-multicast
(#1198 [https://github.com/freifunk-gluon/gluon/issues/1198])

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

The workaround added in Gluon v2017.1.1 has greatly reduced the frequency of
segfaults, but it did not make them disappear completely.

	Frequent reboots due to out-of-memory on weak hardware in larger meshes
(#1243 [https://github.com/freifunk-gluon/gluon/issues/1243])

Gluon 2017.1.4

Added hardware support

ar71xx-generic

	GL Innovations GL-AR300M

Bugfixes

	LEDE has been updated to the latest stable commit, including various fixes for
the kernel (including security updates), and making opkg work again. This also
includes fixes for the KRACK issue (which is irrelevant for most Gluon
deployments, as Gluon nodes are rarely used as WLAN clients)
(b62af904bbfd [https://github.com/freifunk-gluon/gluon/commit/b62af904bbfd6360ed728fc9ae69af3d8e8db1d7],
ba56b41ddaf6 [https://github.com/freifunk-gluon/gluon/commit/ba56b41ddaf6033e3cdef18d30da6b34cd438e8c],
ad0824136e5b [https://github.com/freifunk-gluon/gluon/commit/ad0824136e5b47482e11483c50e7bc88ba2c506e],
017fbe88bb8a [https://github.com/freifunk-gluon/gluon/commit/017fbe88bb8a89623464b02e09178696c1d077a6])

	Fix DNS resolution for mesh VPN (fastd / tunneldigger) on ARM-based targets
(#1245 [https://github.com/freifunk-gluon/gluon/issues/1245])

	Fix a build issue in kmod-jool
(06842728233a [https://github.com/freifunk-gluon/gluon/commit/06842728233a39784c437767eb9df4167ab07a87])

	Fix enabling/disabling PoE Passthrough in site.conf or in the
advanced settings
(7268e49a301f [https://github.com/freifunk-gluon/gluon/commit/7268e49a301fcd643a49b329bd6097a0f85bdaBb],
7c2636d28264 [https://github.com/freifunk-gluon/gluon/commit/7c2636d28264df20b448b0160b69f5059c40b84a])

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

The workaround added in Gluon v2017.1.1 has greatly reduced the frequency of
segfaults, but it did not make them disappear completely.

Gluon 2017.1.3

The LEDE base of Gluon has been updated to v17.01.3, including various updates,
stability improvements and security fixes. This includes some critical fixes
to core packages like dnsmasq (see below for details); upgrading all Gluon
nodes to v2017.1.3 is highly recommended.

Bugfixes

	dnsmasq has been upgraded to v2.78, fixing CVE-2017-13704, CVE-2017-14491,
CVE-2017-14492, CVE-2017-14493, CVE-2017-14494, 2017-CVE-14495 and
2017-CVE-14496

While many of the most severe (remote code execution) vulnarabilities are in
the DHCP component of dnsmasq, which is not active on a Gluon node unless in
Config Mode, CVE-2017-14491 does affect us. An attacker can cause memory
corruption and possibly remote code execution by deploying a malicious DNS
server and tricking a node into querying this server.

	The Linux kernel has been upgraded to v4.4.89

	Multiple security issues have been fixed in packages that are not usually part
of the Gluon build, including tcpdump, curl and mbedtls

Please refer to the
LEDE commit log [https://git.lede-project.org/?p=source.git;a=shortlog;h=refs/heads/lede-17.01]
for details.

	Filtering of multicast packets between the mesh and the local-node interface
has been fixed (#1230 [https://github.com/freifunk-gluon/gluon/issues/1230])

This issue was causing gluon-radvd to send a router advertisement to the local
clients whenever a router solicitation from the mesh was received. In busy
meshes, it would continuously send router advertisements every 3 seconds.

	Reject autoupdater mirror URLs not starting with http:// during build
(9ab93992d1fc [https://github.com/freifunk-gluon/gluon/commit/9ab93992d1fca1b9cfa09c54d39cc92d3699055a])

	Fix MAC addresses on TP-Link TL-WR1043ND v4 when installing Gluon over newer
stock firmwares (#1223 [https://github.com/freifunk-gluon/gluon/issues/1223])

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

The workaround added in Gluon v2017.1.1 has greatly reduced the frequency of
segfaults, but did not make them disappear completely.

Gluon 2017.1.2

New features

	Preserve gw_mode on sysupgrades (#1196 [https://github.com/freifunk-gluon/gluon/issues/1196])

When a Gluon node is used as uplink (for example by connecting it to a router with
a DHCP server directly, instead of using non-Gluon servers for the internet uplink),
the gw_mode must be set to server on that node. The changed gw_mode is now
preserved on upgrades.

	Allow configuring the batman-adv routing algorithm (BATMAN IV or BATMAN V)
in site.conf (#1185 [https://github.com/freifunk-gluon/gluon/issues/1185])

BATMAN V still hasn’t received extensive testing (and is incompatible with BATMAN IV).
This new option allows to set up BATMAN V-based test meshes. If unset, the routing
algorithm will default to BATMAN IV.

Configuration:

mesh = {
 batman_adv = {
 routing_algo = 'BATMAN_V'
 }
}

	New show-release Make target

The command make show-release can be used to print the release number
defined by GLUON_RELEASE to the standard output. This can be useful for build scripts
when a $(shell ...) expression is used in site.mk to generate the release
number.

Bugfixes

	The image build code used for some devices has been fixed, solving multiple
issues (#1193 [https://github.com/freifunk-gluon/gluon/issues/1193])

Problems caused by this issue include:

	sysupgrade rejecting Allnet images

	OpenMesh devices losing their configuration on upgrades

This is a regression introduced in Gluon v2017.1.

	Improve sysupgrade error handling (#1160 [https://github.com/freifunk-gluon/gluon/issues/1160])

If for some reason processes don’t react to SIGKILL (usually because of a kernel bug),
a node could hang forever in sysupgrade, requiring a power cycle. This has been
fixed, triggering a reboot instead.

	Also display gluon-config-mode:novpn message when Tunneldigger is installed, but disabled
(#1172 [https://github.com/freifunk-gluon/gluon/issues/1172])

It was only displayed on nodes with fastd before.

	Fix migration of enabled/disabled state between fastd and Tunneldigger
(#1187 [https://github.com/freifunk-gluon/gluon/issues/1187])

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

The workaround added in Gluon v2017.1.1 has greatly reduced the frequency of
segfaults, but did not make them disappear completely.

Gluon 2017.1.1

Bugfixes

	The autoupdater manifest has been extended to allow automatic upgrades from
old x86-kvm and x86-xen_domu systems to the new x86-generic image
(869ceb4 [https://github.com/freifunk-gluon/gluon/commit/869ceb425cd5f9db3eafddcc52377fd94c6ba0dd])

	Make flash writable again on Ubiquiti PicoStations with certain bootloader
versions (and possibly other devices)
(9a787c9 [https://github.com/freifunk-gluon/gluon/commit/9a787c9878069158151c843b8fd9aa338815d61e])

Units affected by this issue running Gluon v2017.1 can’t leave config mode and
no regular sysupgrades are possible. TFTP recovery is necessary to make them
work again.

	Add workaround to prevent sporadic segfaults of busybox (ash) when running shell scripts on ar71xx
(#1157 [https://github.com/freifunk-gluon/gluon/issues/1157])

	Disable batman-adv multicast optimizations to work around issue causing large
amounts of management traffic
(819758f [https://github.com/freifunk-gluon/gluon/commit/819758f4250af8820851945ba1a6c17748b0ab4b])

Multicast optimizations will be enabled again when a proper fix is available.

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2017.1

General changes

Gluon 2017.1 is the first release of Gluon based on the LEDE 17.01 branch. The
kernel has been updated from 3.18.x to 4.4.x.

We’ve used the opportunity to greatly simplify the Gluon build system, removing
many hacks that were required to make the build work with older OpenWrt releases.

The output/modules directory is now called output/packages and provides a
replacement for the whole repository with target-specific packages of LEDE (in
contrast to packages that are common for all targets of the same architecture).
Another change to the build system makes it necessary that the same GLUON_RELEASE
value that is used to build the images is also set for make manifest.

GCC 4.8 or newer is now required to build Gluon.

Note: There is an issue in all Gluon versions before 2016.2.6 that will
lead to x86 systems losing their configuration when upgrading to Gluon 2017.1!
Older Gluon versions should be upgraded to 2016.2.6 first before switching to
2017.1.

Another potential issue mostly affects virtual machines: Gluon 2017.1 images are
bigger than 2016.2.x images on x86. If your virtual harddisk is based on a
2016.2.x image, it must be resized to 273MB or bigger before upgrading to Gluon
2017.1. Using qemu, the command

qemu-img resize $IMAGE 273MB

can be used to do this.

Added hardware support

ar71xx-generic

	TP-Link

	RE450

	WBS210 v1.20

	WBS510 v1.20

	Ubiquiti

	AirGateway LR

	AirGateway PRO

	Rocket M2/M5 Ti

	UniFi AP LR

ar71xx-tiny

The new ar71xx-tiny target has split out of ar71xx-generic; all
ar71xx-generic devices with only 4MB of flash have been moved to this target.

In contrast to ar71xx-generic, ar71xx-tiny does not support opkg anymore
to save some space.

	TP-Link

	TL-WA730RE v1

	TL-WA7210N v2

x86-generic

The x86-kvm and x86-xen_domu targets have been removed; the x86-generic
images now support these usecases as well, so no separate targets are needed
anymore.

x86-geode

The new x86-geode target for hardware based on Geode CPUs has been added.

New features

	Localization support has been added to the status page. In addition to German,
there are English and Russian translations now (#1044 [https://github.com/freifunk-gluon/gluon/issues/1044])

	Add support for making nodes a DNS cache for clients
(#1000 [https://github.com/freifunk-gluon/gluon/issues/1000])

	Add L2TP via tunneldigger as an alternative VPN system
(#978 [https://github.com/freifunk-gluon/gluon/issues/978])

L2TP will usually give better performance than fastd as it runs in kernel
space, but it does not provide encryption. Also, tunneling over IPv6 is
currently unsupported by tunneldigger.

It is not possible to include both fastd and tunneldigger in the same
firmware.

	Add source filter package (#1015 [https://github.com/freifunk-gluon/gluon/issues/1015])

The new package gluon-ebtables-source-filter can be used to prevent traffic
using unexpected IP addresses or packet types from entering the mesh.

See also: gluon-ebtables-source-filter

Bugfixes

	Disabling batman-adv on an interface (for example when an Ethernet link is lost
or before sysupgrades) could lead to a kernel crash in certain configurations
(#680 [https://github.com/freifunk-gluon/gluon/issues/680])

	A race condition in the network setup scripts could lead to incomplete setup
during boot or when interfaces were added or removed from batman-adv after
Ethernet link changes (#905 [https://github.com/freifunk-gluon/gluon/issues/905])

The fix also solved the long-standing issue of Ethernet-only nodes (i.e. no
WLAN or VPN mesh) not booting up correctly without an Ethernet mesh link.

	Some fixes in the WLAN stack of LEDE have improved the stability of the ath9k
driver (#605 [https://github.com/freifunk-gluon/gluon/issues/605])

Site changes

site.mk

	The gluon-legacy package does not exist anymore

	All gluon-luci- packages have been renamed to gluon-web-;
gluon-luci-portconfig is now called gluon-web-network

	The gluon-next-node package has been merged into the Gluon core and must not
be specified in site.mk anymore

site.conf

	The fastd_mesh_vpn configuration section has been restructured to allow
sharing more options with tunneldigger. Instead of

fastd_mesh_vpn = {
 mtu = 1280,
 configurable = true,
 methods = {'salsa2012+umac'},
 groups = { ... },
 bandwidth_limit = { ... },
}

the configuration must look like this now:

mesh_vpn = {
 mtu = 1280,
 fastd = {
 configurable = true,
 methods = {'salsa2012+umac'},
 groups = { ... },
 }
 bandwidth_limit = { ... },
}

	The opkg.openwrt option has been renamed to opkg.lede

i18n

	The escape function has been removed as it was duplicating the existing
pcdata function. All uses of escape in i18n templates must be changed to
use pcdata instead.

	The gluon-config-mode:altitude-label and gluon-config-mode:altitude-help
translation IDs have been added to allow adjusting the texts for different
kinds of altitudes that might be expected.

	The optional gluon-config-mode:novpn label has been added, which will be
shown in place of gluon-config-mode:pubkey when mesh VPN is disabled.

Internals

	The LuCI base libraries have been replaced by a stripped-down
version called “gluon-web” (#1007 [https://github.com/freifunk-gluon/gluon/issues/1007])

Custom packages will need to be adjusted; in particular, all uses of luci.model.uci
need to be replaced with simple-uci. The Gluon documentation explains the most important
changes required to migrate from LuCI to gluon-web.

	respondd now listens on ff05::2:1001 in addition to ff02::2:1001 for mesh-wide
operation (#984 [https://github.com/freifunk-gluon/gluon/issues/984])

Eventually, ff02::2:1001 will be available for exchanging information
between neighbouring nodes only; map servers should be moved to ff05::2:1001.

	batman-adv has been updated to version 2017.1

	Directly running make commands in the lede directory is supported now. Consequently,
build targets like target/linux/clean and package/NAME/compile can’t be used
in the Gluon repository root anymore.

The command make config will set up the LEDE .config in the way a normal
Gluon build would, so it’s possible to build individual packages for testing
and development afterwards.

	Target definitions have been migrated from a Make-based format to a simpler
shell-based DSL

	Gluon does not pass any custom variables into the LEDE build anymore, so things
like GLUONDIR, GLUON_VERSION, or GLUON_SITEDIR aren’t available
to package Makefiles in Gluon 2017.1.

Instead of $(GLUONDIR)/package.mk, $(TOPDIR)/../package/gluon.mk must
be included in custom packages now.

Known issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.7

This release only fixes a single regression introduced in Gluon v2016.2.6, and
add support for building using Perl 5.26.

Bugfixes

	Improve sysupgrade error handling (#1160 [https://github.com/freifunk-gluon/gluon/issues/1160])

If for some reason processes don’t react to SIGKILL (usually because of a kernel bug),
a node could hang forever in sysupgrade, requiring a power cycle. This has been
fixed, triggering a reboot instead.

	Backport fixes to support building with Perl 5.26 or newer (76753ed [https://github.com/freifunk-gluon/gluon/commit/76753ede0da78e24208f10675fa288247deec961])

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.6

Added hardware support

ar71xx-generic

	TP-Link TL-WR841N/ND v12

Bugfixes

	Fix CVE-2016-10229 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10229]
(#1097 [https://github.com/freifunk-gluon/gluon/issues/1097])

Fortunately, the standard Gluon setup is not vulnerable, as the issue only affects
applications that use MSG_PEEK on UDP sockets. dnsmasq does use MSG_PEEK, but
only in the DHCP component, which is not enabled during normal node operation.

	Fix roaming issue affecting communication between clients
(#1121 [https://github.com/freifunk-gluon/gluon/issues/1121])

This issue affects all previous releases of Gluon v2016.2.x.

	Fix build against OpenSSL 1.1 (b6a22ce [https://github.com/freifunk-gluon/gluon/commit/b6a22ce79307853b175192178bb0333d976a3a6f])

	Fix build with long path names (#1120 [https://github.com/freifunk-gluon/gluon/issues/1120])

	Use new staged sysupgrade procedure (d4a69c0 [https://github.com/freifunk-gluon/gluon/commit/d4a69c00047f72696a2400cd7129be032de458e3])

The new sysupgrade fixes an issue affecting x86, causing nodes to lose their
configuration on upgrade when the size of the kernel partition grows. This is
the case when upgrading from Gluon v2016.2.x to newer (LEDE-based) Gluon
versions. This means that a Gluon node running an older version must be
upgraded to Gluon v2016.2.6 first before switching to a LEDE-based version!

One downside of the staged sysupgrade is that all processes, including the SSH
server, will be terminated at the start of the sysupgrade to allow unmounting
the root filesystem. This makes it impossible to get any feedback from the
upgrade process without a serial console.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.5

This version contains only a single bugfix for a regression introduced in Gluon v2016.2.4.
As the regression affects batman-adv compat 15 only, firmwares using the compat 14 legacy
version don’t need to be updated.

Bugfixes

	Fix kernel crash with batman-adv compat 15 (d452a7c [https://github.com/freifunk-gluon/gluon/commit/d452a7c2cf1c0da4e034666a50dc0e7aa9ddc592])

An incorrect backport of a fix for a very improbable kernel crash caused a much more
frequent kernel crash. The backport has been fixed.

This bug a regression in Gluon v2016.2.4.

Known Issues

	x86 sysupgrade (sometimes) loses config when kernel partition grows (#1010 [https://github.com/freifunk-gluon/gluon/issues/1010])

This issue affects upgrades from v2016.2.x and older to the Gluon master only, we hope to fix it before the next
major release.

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.4

Bugfixes

	Fix batman-adv (compat 15) not being able to transmit packages of specific sizes (b7eeef9 [https://github.com/freifunk-gluon/gluon/commit/b7eeef9b04b44a70b2a953c4efe35a3fdceba2db])

We suspect that this issue was also the reason for the autoupdater/wget hangs observed by many communities.
Non-Gluon nodes like gateways should be updated to batman-adv 2017.0.1 to get the fix.

	Fix build after ftp.all.kernel.org discontinuation (#1059 [https://github.com/freifunk-gluon/gluon/issues/1059])

	Fix high load because of frequent calls of the respondd initscript (9a0aeb9 [https://github.com/freifunk-gluon/gluon/commit/9a0aeb9b7482df4e4515e61356b9d393e3a7eacb])

The respondd restart triggers added in v2016.2.3 ran a significant portion of the respondd initscript for each router advertisement
received. This was fixed by a backport of a netifd patch.

	x86 sysupgrade fixes (41fd50d [https://github.com/freifunk-gluon/gluon/commit/41fd50d20ba31d73c4796c5b2d4eb44ad2258b90],
ad37e2b [https://github.com/freifunk-gluon/gluon/commit/ad37e2b6b43b2c3389356d892b04f3873d8f6b93])

This fixes sysupgrade on mmcblk and similar devices.

Other changes

	The manifest generator has been extended to generate SHA256 checksums in addition to SHA512 ones
(f9d59be [https://github.com/freifunk-gluon/gluon/commit/f9d59be731efd31a26c59e049ccbdc4b1762f6b1])

We have recently switched the autoupdater to SHA256 in the Gluon master to avoid mixing two different
lengths of hashes for no good reason. This makes the manifests of Gluon v2016.2.x compatible with the
new autoupdater so it doesn’t prevent backports or downgrades.

Note: Downgrades of major Gluon versions are generally unsupported and will often lead to
broken configurations.

Known Issues

	x86 sysupgrade (sometimes) loses config when kernel partition grows (#1010 [https://github.com/freifunk-gluon/gluon/issues/1010])

This issue affects upgrades from v2016.2.x and older to the Gluon master only, we hope to fix it before the next
major release.

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.3

Added hardware support

ar71xx-generic

	TP-Link TL-WR940N v4

	TP-Link TL-WR1043ND v4

Removed hardware support

Support for Meraki devices (MR12/16/62/66) has been removed for now because of
severe problems (all devices were using the same MAC addresses). Support will return
when the issues have been fixed.

Bugfixes

	Automatically restart respondd on failure (#863 [https://github.com/freifunk-gluon/gluon/issues/863])

There have been many reports of respondd processes disappearing; the exact cause is unclear,
but might be related to the batman-adv debugfs interface and/or out-of-memory conditions.

A new respondd initscript uses procd to automatically restart respondd when it dies.

	Make autoupdater timeouts more robust (#987 [https://github.com/freifunk-gluon/gluon/issues/987])

It was reported that wget processes sometimes hang indefinitely during the autoupdater manifest
download. The autoupdater has been improved to ensure that wget can always be interrupted after
a timeout.

This issue, together with the recent addition of lock files to ensure that only one instance
of the autoupdater can run at a time, had caused the autoupdater to blocked completely
by hanging processes in some cases (till a node was rebooted).

	Fix regulation domain switching in ath10k (#1001 [https://github.com/freifunk-gluon/gluon/pull/1001])

Prevents use of too high transmission power in some cases.

	Ensure that prefix6 in site.conf is always a /64 prefix (6b62e2f [https://github.com/freifunk-gluon/gluon/commit/6b62e2fc788cd1f83f6634288a15724dfc42b0fd])

Other prefix lengths were never supported and don’t make sense in many places the prefix is used. Ensure
that such configurations will not pass validation.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.2

Added hardware support

ar71xx-generic

	TP-Link

	CPE210/510 EU/US versions

	TL-WA801N/ND v3

	TL-WR841ND v11 EU/US versions

Bugfixes

	Fix boot on certain QCA955x-based devices (e.g. OpenMesh OM5P AC v2) (#965 [https://github.com/freifunk-gluon/gluon/pull/965])

This issue was a regression in Gluon v2016.2.1.

	Build: Fix git downloads from git.kernel.org on Debian Wheezy (#919 [https://github.com/freifunk-gluon/gluon/issues/919])

We’ve switched back from HTTPS to the git protocol for now to avoid using
the old GnuTLS version of Debian Wheezy which can’t establish a HTTPS connection
with git.kernel.org anymore.

This issue was a regression in Gluon v2016.2.

	Fix RX filter of Ubiquiti UAP Outdoor+ (d43147a8e03d [https://github.com/freifunk-gluon/gluon/commit/d43147a8e03dd17bc27e4ab203736f2151f9db3d])

This issue was a regression in Gluon v2016.2.

	Fix switched WAN/LAN interface assignment on CPE210 (59deb2064d54 [https://github.com/freifunk-gluon/gluon/commit/59deb2064d54a37e27139b76a3b6064f5f10f364])

This issue was a regression in Gluon v2016.2.

	Significantly reduce CPU load used by signal strength LEDs (#897 [https://github.com/freifunk-gluon/gluon/issues/897])

	Fix ethernet port of the Ubiquiti UAP AC Lite (#911 [https://github.com/freifunk-gluon/gluon/issues/911])

	Build: Don’t use host /tmp directory (f9072a36411b [https://github.com/freifunk-gluon/gluon/commit/f9072a36411b92089c697b2c0a564155bfe10bd1])

Fixes build when /tmp is mounted with noexec.

	Fix mesh interface type respondd/alfred announcements when using VLANs over IBSS (#941 [https://github.com/freifunk-gluon/gluon/issues/941])

	Fix next-node ebtables rules without next_node.ip4 (9dbe9f785d2b [https://github.com/freifunk-gluon/gluon/commit/9dbe9f785d2b439c3ebdae365b808ebf42b3cf03])

Gluon v2016.2 added support for using the next-node feature without specifying an IPv4
address. Some scripts had not been adjusted, making the next-node unreliable when
no IPv4 address was specified.

Other changes

	x86-generic and x86-64 images now have PATA and MMC support to allow using them
on various devices that were previously unsupported.

	Clean up opkg postinst scripts up on image generation

OpenWrt does this by default to save a little space.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.2.1

Added hardware support

ar71xx-generic

	TP-Link

	TL-WA901ND v4

Bugfixes

	Make status page work with disabled cookies/local storage
(#912 [https://github.com/freifunk-gluon/gluon/pull/912])

	Update kernel to 3.18.44

Fixes CVE-2016-5195 and CVE-2016-7117. It is unlikely that these issues pose
a threat to usual Gluon setups, but installing additional packages may make a
system vulnerable. In any case, updating is highly recommended.

	Downgrade mac80211 to an earlier state

Unfortunately, a mac80211 update that was done shortly before the release of
Gluon v2016.2 (that seemed necessary to properly support ath10k devices) had
again caused severe ath9k stability issues that remained unreported until v2016.2
was out.

We have now reverted mac80211 to an earlier state that was reported to be very
stable (while keeping the ath10k-specific changes); in addition, some patches
that were reported to cause connection or performance issues with certain clients
have been reverted. While is it still not perfectly stable, is should be at least
as good as (and probably better than) the v2016.1.x release series.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Git HTTPS downloads from git.kernel.org fail on Debian Wheezy (#919 [https://github.com/freifunk-gluon/gluon/issues/919])

The GnuTLS version on Debian Wheezy is too old and can’t establish a connection with
git.kernel.org anymore. A newer GnuTLS version is available in wheezy-backports, but
as there is no libcurl3-gnutls package linked against the new version, installing the
new version has no effect.

Gluon 2016.2

Added hardware support

ar71xx-generic

	ALFA Network

	Tube2H

	N2

	N5

	Buffalo

	WZR-HP-G300NH2

	GL Innovations

	GL-AR150

	OpenMesh

	MR1750 v1, v2 1

	OM2P-HS v3

	OM5P-AC v1, v2 1

	TP-Link

	Archer C5 v1 1

	Archer C7 v2 1

	TL-WR710N v2.1

	TL-WR842N/ND v3

	Ubiquiti

	UniFi AP AC Lite 1

	UniFi AP AC Pro 1

	1(1,2,3,4,5,6)

	Device uses the ath10k WLAN driver; no image is built unless GLUON_ATH10K_MESH
is set as described in Make variables

brcm2708-bcm2708

	RaspberryPi 1

brcm2708-bcm2709

	RaspberryPi 2

New features

	Many UBNT Airmax XM model names are detected correctly now (e.g., the Loco
is no longer displayed as Bullet) (#632 [https://github.com/freifunk-gluon/gluon/pull/632])

Also, various new image aliases have been added for these devices.

	batman-adv: mesh_no_rebroadcast is now enabled for Mesh-on-WAN/LAN (#652 [https://github.com/freifunk-gluon/gluon/issues/652])

	The new UCI option gluon-core.@wireless[0].preserve_channels can be used to
prevent a changed WLAN channel from being reset on firmware upgrades (#640 [https://github.com/freifunk-gluon/gluon/issues/640])

	PoE passthrough can now be configured from site.conf and the Advanced Settings
on TP-Link CPE 210/510 and Ubiquiti NanoStations (#328 [https://github.com/freifunk-gluon/gluon/issues/328])

	The config mode altitude field can now be hidden using the config_mode.geo_location.show_altitude
site.conf setting (#693 [https://github.com/freifunk-gluon/gluon/issues/693])

	The contact information field in the config mode can be made obligatory using
the config_mode.owner.obligatory site.conf option

	The node name setting in the config mode is no longer restricted to valid DNS
hostnames, but allows any UTF-8 string (#414 [https://github.com/freifunk-gluon/gluon/issues/414])

	Besides the hostname, public key, site config and primary MAC address, the contact
information can now be accessed from config mode site texts

	The functions escape and urlescape for HTML and URL escaping are now available from config mode
site texts. They should always be used when including user-provided information like
hostnames and contact information in HTML code or URLs.

	Dropbear has been updated to a newer version, enabling new SSH crypto methods and removing
some old ones like DSA. This reduces the time needed for the first boot and makes
SSH logins faster (#223 [https://github.com/freifunk-gluon/gluon/issues/223])

	WLAN basic and supported rate sets have been made configurable, to allow disabling
802.11b rates (#810 [https://github.com/freifunk-gluon/gluon/pull/810])

	ath10k-based devices are now supported officially; it’s possible to choose between
IBSS- and 11s-capable firmwares in site.mk (#864 [https://github.com/freifunk-gluon/gluon/pull/864])

	The prefix4 and next_node.ip4 site.conf options are optional now.

Bugfixes

	The stability of the ath9k WLAN driver has been improved significantly
(#605 [https://github.com/freifunk-gluon/gluon/issues/605])

mac80211, hostapd and other related drivers and services have been backported from LEDE 42f559e.

	Extremely slow downloads could lead to multiple instances of the autoupdater
running concurrently (#582 [https://github.com/freifunk-gluon/gluon/pull/582])

A lockfile is used to prevent this and timeouts have been added to download processes.

	Usage of static DNS servers on the WAN port has been fixed
(#886 [https://github.com/freifunk-gluon/gluon/issues/886])

This is a regression introduced in Gluon v2016.1.6.

Other changes

	The “Expert Mode” has been renamed to “Advanced Settings”

Site changes

site.mk

If you want to support ath10k-based devices, you should set GLUON_ATH10K_MESH
and GLUON_REGION as described in Make variables.

i18n

As the hostname field may now contain an arbitrary UTF-8 string, escaping must
be added.

Change

<%=hostname%>

to

<%=escape(hostname)%>

Inside of URLs, urlescape must be used instead of escape.

Internals

	Mesh interfaces are now configured in a protocol-independent way in UCI (#870 [https://github.com/freifunk-gluon/gluon/pull/870])

The MAC address assignment of all mesh and WLAN interfaces has been modified to prepare for support of
Ralink/Mediatek-based WLAN chips.

	Preparations for supporting the new batman-adv multicast optimizations have been made
(#674 [https://github.com/freifunk-gluon/gluon/pull/674], #675 [https://github.com/freifunk-gluon/gluon/pull/675],
#679 [https://github.com/freifunk-gluon/gluon/pull/679])

	All Lua code is minified now to save some space

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Advanced Settings is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.1.6

Bugfixes

	build: fix nodejs host build on Debian Wheezy (#776 [https://github.com/freifunk-gluon/gluon/issues/776])

	build: fix parallel builds with Make 4.2+

Trying to use -j N with Make 4.2 would spawn an unlimited number of processes,
eventually leading to memory exhaustion.

	build: fix occasional build failure in libpcap package

	build: don’t require hexdump for x86 builds (#811 [https://github.com/freifunk-gluon/gluon/issues/811])

Trying to build Gluon for x86 on systems without hexdump would silently generate
broken images.

	Add support for DNS servers given by their link-local IPv6 address in Router Advertisements
(#854 [https://github.com/freifunk-gluon/gluon/issues/854])

	ar71xx-generic: correctly setup LNA GPIOs on CPE210/510 (#796 [https://github.com/freifunk-gluon/gluon/issues/796])

Improves the reception by about 20dB.

	ar71xx-generic: switch default WAN/LAN assignment on Ubiquiti UAP Pro
(#764 [https://github.com/freifunk-gluon/gluon/issues/764])

Switch to the usual “PoE is WAN/setup mode, secondary is LAN” scheme. This only affects
new installations; the assignment won’t be changed on updates unless the configuration is
reset.

	ar71xx-generic: fix ath10k memory leak (#690 [https://github.com/freifunk-gluon/gluon/issues/690])

	ar71xx-generic: add support for new TP-Link region codes
(#860 [https://github.com/freifunk-gluon/gluon/issues/860])

TP-Link has started providing US- and EU-specific firmwares for the Archer C7 v2. To generate
Gluon images installable from these new firmwares, the GLUON_REGION variable must be set
to eu or us in site.mk or on the make command line (the images will still be
installable from all old firmwares without region codes).

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.1.5

Added hardware support

ar71xx-generic

	OpenMesh

	MR600 (v1, v2)

	MR900 (v1, v2)

	OM2P (v1, v2)

	OM2P-HS (v1, v2)

	OM2P-LC

	OM5P

	OM5P-AN

	Ubiquiti

	Rocket M XW

	TP-LINK

	TL-WR841N/ND v11

Bugfixes

	build: fix race condition caused by using certain make targets (like clean, images or package/*)
with parallel build options without doing a full build before

	build: fix package dependency issue causing “recursive dependency” warning

This dependency issue could lead to broken configurations and reportedly caused failed builds in some cases
when additional (site-specific) packages were used.

	build: Gluon will now build correctly with GCC 6 as host compiler

	Fix configuration of batman-adv when VLANs are used on top of IBSS interfaces (regression due to netifd update in Gluon 2016.1.4)

	Add back missing ath10k firmware (regression due to mac80211 update in Gluon 2016.1.4)

	Gluon can now be used on all supported Ubiquiti AirMAX devices without downgrading to AirOS 5.5.x before

Gluon 2016.1.1 added support for most Ubiquiti AirMAX devices with AirOS 5.6.x without downgrading AirOS,
but left some devices (at least some PicoStations and Bullets) with unwritable flash. This issue has been
resolved (#687 [https://github.com/freifunk-gluon/gluon/issues/687]).

	Add upgrade script to automatically remove whitespace from configured geolocation

The new respondd implementation included in Gluon 2016.1 is stricter about the number format than the
old one and doesn’t accept trailing whitespace (so one or both coordinates are missing from the output).

The Config Mode has been fixed to strip whitespace from numeric fields in new configurations since Gluon 2016.1.1.
This still left old configurations, which are now fixed by this script.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.1.4

Added hardware support

ar71xx-generic

	8devices Carambola 2

	Meraki MR12/MR62/MR16/MR66

Bugfixes

	Major update of all WLAN drivers

We’ve taken the unusual step of updating the WLAN drivers (“wireless-backports”) to a much newer version, as
it was reported that the new version fixes unstable WLAN seen in many setups

	Build fix: a race condition causing parallel builds to fail has been fixed

	Build fix: the Gluon tree could get into a state in which all commands fail with “Too many levels of symbolic links”

	Build fix: allow building Gluon on systems with certain versions of dash as /bin/sh

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Unwritable flash on some Ubiquiti PicoStations (#687 [https://github.com/freifunk-gluon/gluon/issues/687])

Gluon v2016.1.1 added support for Ubiquiti AirMAX devices with AirOS 5.6.x without downgrading AirOS first before
flashing Gluon. It was discovered that on Ubiquiti PicoStations, this downgrade is still necessary, as the
flash is not correctly unlocked, leaving the device unable to leave Config Mode and making regular sysupgrades
impossible.

TFTP recovery can be used in this state to flash a new firmware.

Gluon 2016.1.3

Added hardware support

ar71xx-generic

	ALFA Hornet UB / AP121 / AP121U

	TP-Link TL-WA7510N

Bugfixes

	The nondeterministic boot hang (#669 [https://github.com/freifunk-gluon/gluon/issues/669]) that was thought to
be fixed in Gluon v2016.1.2 has resurfaced on other hardware. We believe it is now fixed properly.

	Sysupgrades on the Xen DomU have been fixed.

	Gluon can now be built on systems that use LibreSSL instead of OpenSSL.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Unwritable flash on some Ubiquiti PicoStations (#687 [https://github.com/freifunk-gluon/gluon/issues/687])

Gluon v2016.1.1 added support for Ubiquiti AirMAX devices with AirOS 5.6.x without downgrading AirOS first before
flashing Gluon. It was discovered that on Ubiquiti PicoStations, this downgrade is still necessary, as the
flash is not correctly unlocked, leaving the device unable to leave Config Mode and making regular sysupgrades
impossible.

TFTP recovery can be used in this state to flash a new firmware.

Gluon 2016.1.2

Added hardware support

The x86-generic images now contain the ATIIXP PATA driver, adding support for
FUTRO Thin Clients.

Bugfixes

A nondeterministic boot hang (#669 [https://github.com/freifunk-gluon/gluon/issues/669]) has been fixed.
The TL-WR841N v5 seems to be affected in particular, but the kernel bug is not hardware-specific per se.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

Gluon 2016.1.1

Added hardware support

ar71xx-generic

	Onion Omega

	TP-Link TL-MR13U v1

Bugfixes

Build

Don’t overwrite the opkg repository key on each build.

AirOS 5.6.x compatiblity

Downgrading to AirOS 5.5.x before flashing Gluon on Airmax M XM/XW devices
(NanoStation, Bullet, …) is not necessary anymore.

Status page

	Fix purging of disappered neighbours from the list

	Don’t clear the signal graphs when scrolling in mobile browsers

	Improve browser compability (don’t assume the Internationalization API is available,
fixes the display of numbers in Firefox for Android)

Config mode

	Strip trailing whitespace from number input fields (LuCI’s validator doesn’t catch this)

	Don’t allow negative bandwidth limits

Failsafe mode

	Fix entering the failsafe mode on the TL-WDR4900.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd/announced API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced eventually. The old API will still be supported for a while.

	Nondeterministic production of broken images for some (very old) hardware (#669 [https://github.com/freifunk-gluon/gluon/issues/669])

At the moment it seems like only the TL-WR841N v5 is affected.

Gluon 2016.1

Added hardware support

ar71xx-generic

	Buffalo

	WZR-HP-G300NH

	D-Link

	DIR-505 (A1)

	TP-Link

	CPE210/220/510/520 v1.1

	TL-WA901N/ND v1

	TL-WR710N v2

	TL-WR801N/ND v1, v2

	TL-WR841N/ND v10

	TL-WR843N/ND v1

	TL-WR940N v1, v2, v3

	TL-WR941ND v6

	TL-WR1043N/ND v3

	Ubiquiti

	airGateway

	airRouter

	UniFi AP Outdoor+

	Western Digital

	My Net N600

	My Net N750

x86-xen_domu

New target containing the necessary drivers for use in Xen.

x86-64

64bit version of x86-generic. The generic image can also be used in KVM with VirtIO.

New features

Kernel module opkg repository

We’ve not been able to keep ABI compatiblity with the kernel of the official OpenWrt images.
Therefore, Gluon now generates an opkg repository with modules itself.

The repository can be found at output/modules/ by default, the image output directory has
been moved from images/ to output/images/. See the updated Getting Started guide
for information on the handling of the signing keys for this repository.

The opkg_repo site.conf option has been replaced to allow specifying this and other additional repositories.

New status page

The new status page provides a visually pleasing experience, and displays all important information
on a node in a clear manner. It also contains a real-time signal strength graph for all neighbouring
nodes to aid with the alignment of antennas.

802.11s mesh support

Gluon now supports using 802.11s for its mesh links instead of IBSS (Adhoc). This will allow supporting
more WLAN hardware in the future (like Ralink/Mediatek, which don’t support AP and IBSS mode simultaneously).

Note that batman-adv is still used on top of 802.11s (and 802.11s forwarding is disabled), the mesh routing protocol
provided by 802.11s is not used.

Multicast filter extension

The gluon-ebtables-filter-multicast package has been extended to filter out multicast
ICMP and ICMPv6 Echo Requests (ping) and Node Information Queries (RFC4620). This prevents
pings to multicast addresses like ff02::1 to cause traffic peaks
(as all nodes and clients would answer such a ping).

French translation

A French translation for the Config Mode/Expert Mode has been added.

Bugfixes

	Update kernel code for the QCA953x

Might improve stability of the TP-Link TL-WR841N/ND v9.

	Fix model detection on some Netgear WNDR3700v2

The broken devices will identify as “NETGEAR “.
This also breaks the autoupdater, making a manual upgrade necessary.

	Ensure that odhcp6c doesn’t spawn multiple instances of dhcpv6.script

	Fix support for Buffalo WZR-600DHP

A flashable factory image is generated now. The sysupgrade image is still shared
with the WZR-HP-AG300H.

Site changes

	site.conf

	New WLAN configuration

wifi24 and wifi5 need to be updated to a new more flexible format.
A configuration using the old format

{
 channel = 1,
 htmode = 'HT20'
 ssid = 'entenhausen.freifunk.net',
 mesh_ssid = 'xe:xx:xx:xx:xx:xx',
 mesh_bssid = 'xe:xx:xx:xx:xx:xx',
 mesh_mcast_rate = 12000,
}

would look like this in the new format:

{
 channel = 1,
 ap = {
 ssid = 'entenhausen.freifunk.net',
 },
 ibss = {
 ssid = 'xe:xx:xx:xx:xx:xx',
 bssid = 'xe:xx:xx:xx:xx:xx',
 mcast_rate = 12000,
 },
}

The htmode option has been dropped, the channel width is now always set to 20MHz
(see https://github.com/freifunk-gluon/gluon/issues/487 for a discussion of this change).

In addition to the old IBSS (Adhoc) based meshing, 802.11s-based meshing can be configured
using the mesh section. Example:

{
 channel = 1,
 ap = {
 ssid = 'entenhausen.freifunk.net',
 },
 mesh = {
 id = 'mesh.entenhausen.freifunk.net', -- can by any string, human-readable or random
 mcast_rate = 12000,
 },
}

While using ibss and mesh at the same time is possible, is causes high load in
very active meshes, so it is advisable to avoid such configurations.

	Bandwidth limitation defaults

The old section simple_tc.mesh_vpn has been moved to fastd_mesh_vpn.bandwidth_limit and the ifname
field isn’t used anymore. What looked like this
before

simple_tc = {
 mesh_vpn = {
 ifname = 'mesh-vpn',
 enabled = false,
 limit_egress = 200,
 limit_ingress = 3000,
 },
}

needs to be changed to

fastd_mesh_vpn = {
 -- ...

 bandwidth_limit = {
 enabled = false,
 egress = 200,
 ingress = 3000,
 },
}

	opkg repository configuration

The opkg configuration has been changed to be more flexible and allow specifying custom repositories.
Example:

opkg = {
 openwrt = 'http://opkg.services.ffeh/openwrt/%n/%v/%S/packages',
 extra = {
 modules = 'http://opkg.services.ffeh/modules/gluon-%GS-%GR/%S',
 },
}

The keys of the extra table (like modules in this example) can be chosen arbitrarily.

Instead of explicitly specifying the whole URL, using patterns is recommended. The following
patterns are understood:

	%n is replaced by the OpenWrt version codename (e.g. “chaos_calmer”)

	%v is replaced by the OpenWrt version number (e.g. “15.05”)

	%S is replaced by the target architecture (e.g. “ar71xx/generic”)

	%GS is replaced by the Gluon site code (as specified in site.conf)

	%GV is replaced by the Gluon version

	%GR is replaced by the Gluon release (as specified in site.mk)

	site.mk

	The packages gluon-announce and gluon-announced were merged into
the package gluon-respondd. If you had any of them (probably
gluon-announced) in your package list, you have to replace them.

	i18n/

	The translations of gluon-config-mode:pubkey now have to show the fastd
public key themselves if desired, making the formatting of the key and whether it is shown at
all configurable. To retain the old format, add <p> to the beginning of
your translations and append:

"</p>"
"<div class=\"the-key\">"
" # <%= hostname %>"
"
"
"<%= pubkey %>"
"</div>"

Internals

	OpenWrt has been updated to Chaos Calmer

	mac80211 has been backported from OpenWrt trunk r47249 (wireless-testing 2015-07-21)

This allows us to support the TL-WR940N v3/TL-WR941ND v6, which uses a TP9343 (QCA956x) SoC.

	Several packages have been moved from the Gluon repo to the packages repo, removing references to Gluon:

	gluon-cron -> micrond (the crontabs are now read from /usr/lib/micron.d instead of /lib/gluon/cron)

	gluon-radvd -> uradvd

	gluon-simple-tc -> simple-tc (the config file has been renamed as well)

	Some of the Gluon-specific i18n support code in the build system has been removed, as LuCI now provides
similar facilities

	The C-based luci-lib-jsonc library is now used for JSON encoding/decoding instead of the pure Lua luci-lib-json

	The site config is now stored as JSON on the node. The Lua interface gluon.site_config is still available, and a C interface was added as part of the new package libgluonutil.

	The respondd daemon now uses C modules instead of Lua snippets, which greatly enhances response speed and reduces memory usage. The Gluon integration package has
been renamed from gluon-announced to gluon-respondd.

Known Issues

	Default TX power on many Ubiquiti devices is too high, correct offsets are unknown (#94 [https://github.com/freifunk-gluon/gluon/issues/94])

Reducing the TX power in the Expert Mode is recommended.

	batman-adv causes stability issues for both alfred and respondd/announced (#177 [https://github.com/freifunk-gluon/gluon/issues/177])

	The MAC address of the WAN interface is modified even when Mesh-on-WAN is disabled (#496 [https://github.com/freifunk-gluon/gluon/issues/496])

This may lead to issues in environments where a fixed MAC address is expected (like VMware when promicious mode is disallowed).

	Inconsistent respondd/announced API (#522 [https://github.com/freifunk-gluon/gluon/issues/522])

The current API is inconsistent and will be replaced in the next release. The old API will still be supported for a while.

Gluon 2015.1.2

Added hardware support

ar71xx-generic

	TP-Link

	TL-WA701N/ND (v2)

	TL-WA801N/ND (v1)

	TL-WA830RE (v2)

	TL-WR740N / TL-WR741ND (v5)

New features

	Ubiquiti Loco M, Picostation M and Rocket M now get their own images (which are just copies of the Bullet M image)
so it’s more obvious for users which image to use

	The x86-generic images now contain the e1000e ethernet driver by default

Bugfixes

	Fix download of OpenSSL during build because of broken OpenSSL download servers (again…)

	Fix another ABI incompatiblity with the upstream kernel modules which prevented loading some filesystem-related modules

	Fix potential MAC address conflicts on x86 target when using mesh-on-wan/lan

	Fix signal strength indicators on TP-LINK CPE210/510

	Fix the model name string on some NETGEAR WNDR3700v2

	Fix 5GHz WLAN switching channels and losing connectivity when other WLANs using the same channel are detected (including other Gluon nodes…); see https://github.com/freifunk-gluon/gluon/issues/386

	Fix DNS resolution for mesh VPN on IPv6-only WAN; see https://github.com/freifunk-gluon/gluon/issues/397

	gluon-mesh-batman-adv-15: update batman-adv to 2015.0 with additional bugfixes (fixes various minor bugs)

	gluon-mesh-batman-adv-15: fix forwarding of fragmented frames over multiple links with different MTUs

batman-adv compat 15 doesn’t re-fragment frames that are fragmented already. In particular,
this breaks transmission of large packets which are first fragmented for mesh-on-lan/wan and are then sent
over the mesh VPN, which has an even smaller MTU. Work around this limitation by decreasing the maximum fragment
size to 1280, so they can always be forwarded as long there’s no link with a MTU smaller than 1280.

See https://github.com/freifunk-gluon/gluon/issues/435

Gluon 2015.1.1

Added hardware support

ar71xx-generic

	TP-Link

	TL-WA830RE (v1)

New features

The x86-generic and x86-kvm_guest images now support two ethernet interfaces by default. If two interfaces exist during
the first boot, eth0 will be used as LAN and eth1 as WAN.

Bugfixes

	Fix German “Expert Mode” label (was “Export Mode”)

	Fix download of OpenSSL during build (because of broken OpenSSL download servers…)

	Fix ABI break causing kernel panics when trying to use network-related modules from the official OpenWrt repository (like kmod-pppoe)

	Fix race conditions breaking parallel build occasionally

	A broken network configuration would be generated when an older Gluon version was updated to 2015.1 with
mesh_on_lan enabled in site.conf

	Minor announced/alfred JSON format fixes (don’t output empty lists where empty objects would be expected)

Gluon 2015.1

Added hardware support

Gluon v2015.1 is the first release to officially support hardware
that is not handled by the ar71xx-generic OpenWrt target. This also
means that ar71xx-generic isn’t the default target anymore, the GLUON_TARGET
variable must be set for all runs of make and make clean now.

ar71xx-generic

	Allnet

	ALL0315N

	D-Link

	DIR-615 (C1)

	GL-Inet

	6408A (v1)

	6416A (v1)

	WRT160NL

	Netgear

	WNDR3700 (v1, v2)

	WNDR3800

	WNDRMAC (v2)

	TP-Link

	TL-MR3220 (v2)

	TL-WA701N/ND (v1)

	TL-WA860RE (v1)

	TL-WA901N/ND (v2, v3)

	TL-WR743N/ND (v1, v2)

	TL-WR941N/ND (v5)

	TL-WR2543N/ND (v1)

	Ubiquiti

	Nanostation M XW

	Loco M XW

	UniFi AP Pro

ar71xx-nand

	Netgear

	WNDR3700 (v4)

	WNDR4300 (v1)

mpc85xx-generic

	TP-Link

	TL-WDR4900 (v1)

x86-generic

	x86-generic

	x86-virtualbox

	x86-vmware

x86-kvm_guest

	x86-kvm

New features

Multilingual config mode

All config and expert mode modules contain both English and German texts now. The English
locale should always be enabled in site.mk (as English is the fallback language),
German can be enabled in addition using the GLUON_LANGS setting.

The language shown is autmatically determined from the headers sent by the user’s
browser.

Mesh-on-LAN

Gluon now supports meshing using a node’s LAN ports. It can be enabled by
default in site.conf, and configured by the user using the gluon-luci-portconfig
expert mode package.

Please note that nodes without the mesh-on-lan feature enabled must never be connected
via their LAN ports.

Extended WLAN configuration

The new client_disabled and mesh_disabled keys in the wifi24 and wifi5 sections allow
to disable the client and mesh networks by default, which may make sense for images for
special installations.

The new package gluon-luci-wifi-config allows the user to change these settings; in addition,
the WLAN adapters’ transmission power can be changed in this package.

fastd “performance mode”

The new package gluon-luci-mesh-vpn-fastd allows the user to switch between the security and
performance VPN settions. In performance mode, the method null will be prepended to the
method list.

The new option configurable in the fastd_mesh_vpn section of site.conf must be set to true
so firmware upgrades don’t overwrite the method list completely (non-null methods will still
be overwritten). Adding the gluon-luci-mesh-vpn-fastd package enforces this setting.

Altitude setting in gluon-config-mode-geo-location

The gluon-config-mode-geo-location config mode module
now contains an optional altitude field.

gluon-announced rework

The gluon-announced package has been reworked to allow querying it from anywhere in the mesh.
In contrast to gluon-alfred, it is based on a query-response model (the master multicasts a query,
the nodes respond), while gluon-alfred uses periodic announcements.

For now, we recommend including both gluon-alfred and gluon-announced in Gluon-based firmwares,
until gluon-announced is ready to replace gluon-alfred completely, and software like the
ffmap backend has been adjusted accordingly.

Nested peer groups

Nested peer groups for the fastd-mesh-vpn-fastd package can now be configured in site.conf,
each with its own peer limit. This allows to add additional constaints, for example to connect
to 2 peers altogether, but only 1 peer in each data center.

Autoupdater manual branch override

When running the updater manually on the command line, the branch to use can now be
overridden using the -b option.

Bugfixes

Accidental factory reset fix

Pressing a node’s reset button for more than 5 seconds would completely reset a node’s
configuration under certain conditions.

WAN IPv6 issues

The WAN port would stop to respond to IPv6 packets sometimes, also breaking IPv6 VPN connectivity.

WDR4900 WAN MAC address

The MAC address on the WAN port of the WDR4900 was broken, making this device unusable for mesh-on-wan
configurations.

Site changes

	site.conf

	hostname_prefix is now optional, and is concatenated directly with the
generated node ID, in particular no hyphen is inserted anymore. If you want
to keep the old behaviour, you have to append the hyphen to the
hostname_prefix field of your site.conf.

	mesh_vpn_fastd: The default peer group name backbone isn’t hardcoded anymore, any
group name can be used. Instead, the fastd_mesh_vpn table must now contain an element groups,
for example:

fastd_mesh_vpn = {
 methods = {'salsa2012+umac'},
 mtu = 1426,
 groups = {
 backbone = {
 limit = 2,
 peers = {
 -- ...
 }
 }
 }
}

	config_mode: The config mode messages aren’t configured in site.conf anymore. Instead, they are
defined language-specific gettext files in the i18n subdirectory of the site configuration (see
Config mode texts).

	roles: The display strings for the node roles aren’t configured in the site.conf anymore, but
in the site i18n files. The site.conf section becomes:

roles = {
 default = 'foo',
 list = {
 'foo',
 'bar',
 }
}

The display string use i18n message IDs like gluon-luci-node-role:role:foo and gluon-luci-node-role:role:bar.

	site.mk

	gluon-mesh-batman-adv-15 is now the recommended batman-adv version for new Gluon deployments.

	The packages gluon-setup-mode and gluon-config-mode-core must now be
added to GLUON_SITE_PACKAGES explicitly (to allow replacing them with
community-specific implementations).

	The new GLUON_LANGS variable selects the config mode languages to include. It defaults to en,
setting it to en de will select both the English and German locales. en must always be
included.

Internals

New upgrade script directory

The distinction between initial and invariant scripts has been removed,
all scripts are now run on each upgrade. Instead of having one script directory
per package, all upgrade scripts lie in /lib/gluon/upgrade now, so it is
possible to define the run order across packages.

Merged package repository

The Gluon-specific packages have been moved to the package directory of the Gluon
main repository. The packages repository now only contains packages that will be
submitted to the OpenWrt upstream eventually.

Known Issues

Alfred/respondd crashes

https://github.com/freifunk-gluon/gluon/issues/177

Occasional alfred crashes may still occur. As this is caused by a kernel issue,
we suspect that respondd, which gluon-announced is based on, is affected
in the same way.

Ignored TX power offset on Ubiquiti AirMax devices

https://github.com/freifunk-gluon/gluon/issues/94

The default transmission power setting on many of these devices
is too high. It may be necessary to make manual adjustments, for example
using the gluon-luci-wifi-config package. The values shown by
gluon-luci-wifi-config generally include the TX power offset
(amplifier and antenna gain) where available, but on many devices
the offset is inaccurate or unavailable.

Gluon 2014.4

Added (and removed) hardware support

	Buffalo

	WZR-HP-AG300H / WZR-600DHP

	WZR-HP-G450H

	D-Link

	DIR-615 (E1) support had to be dropped

	TP-LINK

	CPE210/220/510/520 (v1)

	TL-MR3040 (v2

	TL-WA750RE (v1)

	TL-WA801N/ND (v2)

	TL-WA850RE (v1)

	TL-WR703N (v1)

	TL-WR710N (v1)

	TL-WR1043N/ND (v2)

New features

OpenWrt Barrier Breaker

Switching to the new OpenWrt release 14.09 (“Barrier Breaker”) has yielded
lots of updates for both the kernel and most packages. Besides better
performance, this has also greatly improved stability (far less out-of-memory
issues!).

Modular config mode

The old gluon-config-mode package has been split into five
small packages, each providing a single section of the config
mode form. This simplifies removing or replacing parts of the wizard.

See the Site changes section for details.

Experimental support for batman-adv compat 15

As batman-adv has broken compatiblity starting with batman-adv 2014.0
(bumping the “compat level” to 15), Gluon users must decide which
batman-adv version to use. The package for the old batman-adv version
gluon-mesh-batman-adv has been renamed to gluon-mesh-batman-adv-14,
the new version can be used with gluon-mesh-batman-adv-15.

Please note that batman-adv compat 15 still isn’t tested very well
(and there are known bugs in the current release 2014.3), so for now
we still recommend using compat 14 in “production” environments.

fastd v16

Besides other new features and bugfixes, fastd v16 support the new
authentication method “UMAC”. We recommend switching from the old
salsa2012+gmac and null+salsa2012+gmac methods to the new
salsa2012+umac and null+salsa2012+umac as UMAC is
much faster and even more secure than GMAC.

Private WLAN

The new package gluon-luci-private-wifi allows to configure a private WLAN
with WPA-PSK in the expert mode which is bridged with the WAN uplink.

Embedding SSH keys

Using gluon-authorized-keys it is possible to embed predefined SSH
public keys to firmware images. If gluon-config-mode-* is left out
images will be ready to mesh after the first boot with SSH running for
further configuration.

Status page resolves nodenames

The tools gluon-announced and gluon-neighbour-info are now
available. Using them enables the status page to resolve hostnames and
IPs of a nodes’ neighbours.

This will also work on devices with multiple wireless interfaces.

Bugfixes

	Expert Mode: Fixed all SSH keys being removed when a password was set

	gluon-mesh-vpn-fastd: Fixed VPN peers removed from the site.conf not being removed from /etc/config/fastd

	TL-LINK TL-WDR3600/4300: Added workaround for reboot issues

	Improved stability (due to switch to OpenWrt Barrier Breaker)

Site changes

	site.mk

	Obsolete packages:

	gluon-config-mode

	gluon-mesh-batman-adv

	Recommended new packages:

	gluon-config-mode-autoupdater

	gluon-config-mode-hostname

	gluon-config-mode-mesh-vpn

	gluon-config-mode-geo-location

	gluon-config-mode-contact-info

	gluon-mesh-batman-adv-14 (specify this before all other packages in the site.mk!)

Internals

The switch to Barrier Breaker has led to a multitude of changes all over Gluon:

	The config mode/setup mode is now started by an own set of init scripts in /lib/gluon/setup-mode/rc.d run by procd

	Many tools and services used by Gluon have been replaced by our own implementations to reduce the size of the images:

	ethtool has been replaced by our minimal Lua library lua-ethtool-stats

	tc has been replaced by our minimal implementation gluon-simple-tc

	radvd has been replaced by our minimal implementation gluon-radvd

Known Issues

Alfred crashes

https://github.com/freifunk-gluon/gluon/issues/177

Alfred may still crash unconditionally. Some measures have been taken
to aid but the core problem hasn’t been analyzed yet.

Out of memory / batman-adv memory leaks

https://github.com/freifunk-gluon/gluon/issues/216

In some (hopefully rare!) cases batman-adv may still leak memory
associated with global TT entries. This may result in kernel panics or
out-of-memory conditions.

Ignored tx-power offset on Ubiquiti AirMax devices

https://github.com/freifunk-gluon/gluon/issues/94

There is still no OpenWRT support for determining the transmission
power offsets on Ubiquiti AirMax devices (Bullet M2, Picostation
M2, Nanostation (loco) M2, …). Use Gluon with caution on these
devices! Manual adjustment may be required.

Gluon 2014.3.1

This is a bugfix release.

Bugfixes

	gluon-announced zombie process bug

gluon-announced was creating zombie processes when answering requests, causing issues
with the new status page which is currently in development.

	fastd peers removed from site.conf weren’t removed correctly from the fastd configuration
on firmware upgrades

	Expert Mode: setting a password will not remove SSH keys anymore

	alfred has been updated to 2014.3.0

We hope this solves the alfred stability issues noted by several people.

	gluon-ebtables-filter-ra-dhcp and gluon-ebtables-filter-multicast have been fixed
to allow DHCPv6 to work

	Another ath9k patch has been added, which might further improve WLAN stability and performance

New features

	Support for static WAN setups instead of (DHCP/Router Advertisement) has been added;
configuration is possible on the port config page of the Expert Mode.

Site changes

	site.conf

	The new boolean option fastd_mesh_vpn.enabled allows
enabling the mesh VPN by default. This value is optional;
if it isn’t specified, the mesh VPN will be disabled.

Gluon 2014.3

New hardware support

	Linksys WRT160NL

New features

New autoupdater

The autoupdater has been rewritten.

Two new fields have been added to the manifest:

	DATE

	Specifies the time and date the update was released. make manifest will take care of setting it to the correct value.

	PRIORITY

	Specifies the maximum number of days until the update should be attempted (thus lower numbers
mean the priority is higher). It must be set either in site.mk or on the make manifest command line.

Updates will be attempted at night, between 04:00 and 5:00, with a specific probability.
When less than PRIORITY days have passed (calculated using DATE and the current time),
the probability will proportional to the time passed. I.e. the update probability will start at 0
and slowly increase to 1 until PRIORITY days have passed. From then, the probability will be fixed at 1.

Note: For the new update logic to work, a valid NTP server reachable over the mesh (using IPv6) must
be configured in site.conf. If the autoupdater is unable to determine the correct time, it will fall back to
a behavior similar to the old implementation (i.e. hourly update attempts).

Seperation of announced data

The data announced by alfred has been split into two data types:

	nodeinfo (type 158) contains all static information about a node

	statistics (type 159) contains all dynamic information about a node

Both types also contain a new field node_id which contains an arbitrary unique ID
(currently the primary MAC address, sans colons) which can be used to match the nodeinfo
with statistics information.

gluon-announced

A new daemon has been added in a new package gluon-announced. This daemon can be
used for querying the nodeinfo data of a node via link-local multicast on the ad-hoc
interfaces.

At the moment, this daemon is not used, but we recommend including it in site.mk nevertheless
as we plan to implement a new status page showing some information about neighbor nodes in
the next version of Gluon.

VPN over IPv6

It is now possible to use fastd in IPv6 WAN networks. This still needs testing, but it should work well.

Please note that the MTU of 1426 used by many communities for VPN over IPv4 is too big for IPv6 as
the IPv6 header is 20 bytes longer (fastd over IPv4 has an overhead of 66 bytes,
fastd over IPv6 has an overhead of 86 bytes).

More modular Config Mode

The package gluon-config-mode has been split into multiple packages to simplify the development of
extensions. The low-level logic (handling of the button, starting the services for the config mode) has been moved
into a new package gluon-setup-mode, while gluon-config-mode only contains the frontend now.

Extended Expert Mode

The Expert Mode now has a nice info page. In addition, the new package gluon-luci-portconfig has been added
which allows simple configuration of batman-adv on the WAN interface.

Site validators

The content of the site.conf is now validated when the images are built to make it less likely to accidentially
build broken images.

gluon-firewall

The package gluon-firewall has been removed. Its features are now part of the packages gluon-core and
gluon-mesh-batman-adv.

gluon-ath9k-workaround

This package installs a cron job which tries to recognize ath9k hangs and restart the WLAN while recording some information.
It is very rudimentary and we can’t really recommend using it on “production” nodes.

Bugfixes

Improved ath9k stability

Multiple bugs in the WLAN driver ath9k have been fixed upstream. This should greatly improve the WLAN stability.

odhcp6c 50 day bug

An important update for odhcp6c fixes a bug which caused Gluon nodes to lose their IPv6 addresses on br-client after an uptime
of 50 days, making the nodes unable perform automated updates (besides other issues).

IPv6 preference

Commands like wget now prefer IPv6 for domains with both AAAA and A records, allowing to use such domains for the autoupdater URLs
and as NTP servers in site.conf.

Site changes

	site.conf

	The probability fields for the autoupdater branches can be dropped as they aren’t used anymore

	The type of the enabled options of the gluon-simple-tc configuration has been changed to boolean, so true and false must be used instead of 1 and 0 now

	site.mk

	Obsolete packages:

	gluon-firewall

	Recommended new packages:

	gluon-announced

	gluon-luci-portconfig

	GLUON_PRIORITY must be set in site.mk or on the make manifest commandline. Use GLUON_PRIORITY ?= 0 in site.mk to allow overriding from the commandline.

Internals

Some internal changes not mentioned before which are interesting for developers:

	Many more shell scripts have been converted to Lua

	gluon-mesh-vpn-fastd now uses the new package gluon-wan-dnsmasq, which provides a secondary DNS server on port 54
that is only reachable from localhost and uses the DNS servers on the WAN interface for everything. This allowed us to
remove some ugly hacks which were making the DNS servers used depend on the domain being resolved.

For IPv6, the default route is now controlled via packet marks, so the secondary DNS server and fastd set the packet mark
so they use the default route provided on the WAN interface instead of the mesh.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/node_configmode.gif
PWRsYs wan O 4B wan Uss ass

Wireless N Gigabit Router TL-WR1043ND

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Gluon

 		
 Getting Started

 		
 Selecting the right version

 		
 Dependencies

 		
 Building the images

 		
 Cleaning the build tree

 		
 opkg repositories

 		
 Signing keys

 		
 Make variables

 		
 Common variables

 		
 Special variables

 		
 Site configuration

 		
 Configuration

 		
 Build configuration

 		
 Feature flags

 		
 Config mode texts

 		
 Site modules

 		
 Examples

 		
 site.mk

 		
 site.conf

 		
 i18n/en.po

 		
 i18n/de.po

 		
 modules

 		
 site-repos in the wild

 		
 x86 support

 		
 Targets

 		
 Frequently Asked Questions

 		
 DNS does not work on the nodes

 		
 What is a good MTU on the mesh-vpn

 		
 Minimum MTU

 		
 Maximum MTU

 		
 Conclusion

 		
 Config Mode

 		
 Activating Config Mode

 		
 Port Configuration

 		
 Accessing Config Mode

 		
 Autoupdater

 		
 Building Images

 		
 Automated nightly builds

 		
 Infrastructure

 		
 Command Line

 		
 WLAN configuration

 		
 Upgrade behaviour

 		
 Private WLAN

 		
 Wired mesh (Mesh-on-WAN/LAN)

 		
 Wired mesh encapsulation

 		
 Configuration

 		
 Commandline

 		
 DNS forwarder

 		
 Node monitoring

 		
 Format of collected data

 		
 Accessing Node Information

 		
 alfred (mesh bound)

 		
 gluon-respondd

 		
 gluon-neighbour-info

 		
 Adding a data provider

 		
 Multidomain Support

 		
 Preamble

 		
 Overview

 		
 Switching the domain

 		
 Allowed site variables

 		
 site.conf only variables

 		
 domain.conf only variables

 		
 Example config

 		
 site.mk

 		
 site.conf

 		
 domains/alpha_centauri.conf

 		
 i18n/en.po

 		
 i18n/de.po

 		
 modules

 		
 Adding SSH public keys

 		
 Roles

 		
 Mesh-VPN

 		
 fastd

 		
 Configurable Cipher

 		
 Development Basics

 		
 Bug Tracker

 		
 IRC

 		
 Working with repositories

 		
 Development Guidelines

 		
 Adding support for new hardware

 		
 Hardware requirements

 		
 Adding profiles

 		
 Suffixes and extensions

 		
 Aliases

 		
 Standalone images

 		
 Packages

 		
 Configuration

 		
 Notes

 		
 Adding support for new hardware targets

 		
 Package adjustments

 		
 Build system support

 		
 Package development

 		
 Gluon package makefiles

 		
 Provided macros

 		
 Default build steps

 		
 Feature flags

 		
 Upgrade scripts

 		
 Basics

 		
 Best practices

 		
 Script ordering

 		
 WAN support

 		
 Routing tables

 		
 libpacketmark

 		
 gluon-wan-dnsmasq

 		
 MAC addresses

 		
 gluon.site library

 		
 Controllers

 		
 Dispatchers

 		
 The HTTP object

 		
 The template renderer

 		
 Differences from LuCI

 		
 Models

 		
 Classes and methods

 		
 Data types

 		
 Differences from LuCI

 		
 Views

 		
 Variables and functions

 		
 Internationalization support

 		
 General guidelines

 		
 i18n support in Gluon

 		
 Adding translation templates to Gluon packages

 		
 Adding translations

 		
 Adding support for new languages

 		
 Config Mode

 		
 Writing Config Mode modules

 		
 Wizards

 		
 Reboot page

 		
 gluon-client-bridge

 		
 site.conf

 		
 gluon-config-mode-domain-select

 		
 domains/*.conf

 		
 gluon-ebtables-filter-multicast

 		
 gluon-ebtables-filter-ra-dhcp

 		
 gluon-ebtables-limit-arp

 		
 gluon-ebtables-source-filter

 		
 site.conf

 		
 gluon-radv-filterd

 		
 Selected router

 		
 â��Localâ�� routers

 		
 respondd module

 		
 site.conf

 		
 gluon-web-admin

 		
 site.conf

 		
 gluon-web-logging

 		
 Gluon 2018.1.2

 		
 Bugfixes

 		
 Other changes

 		
 Known issues

 		
 Gluon 2018.1.1

 		
 Bugfixes

 		
 Other changes

 		
 Known issues

 		
 Gluon 2018.1

 		
 Important notes

 		
 Added hardware support

 		
 ar71xx-generic

 		
 ar71xx-nand

 		
 ar71xx-tiny

 		
 ipq806x

 		
 ramips-mt7620

 		
 ramips-mt7628

 		
 ramips-rt305x

 		
 sunxi

 		
 New features

 		
 Multidomain support

 		
 Wired mesh encapsulation

 		
 Router advertisement filtering

 		
 IGMP/MLD segmentation

 		
 gluon-ebtables-limit-arp

 		
 Public key in respondd data (optional)

 		
 B.A.T.M.A.N. V (experimental)

 		
 Site changes

 		
 site.mk

 		
 site.conf

 		
 i18n

 		
 Internals

 		
 Status page rewrite

 		
 i18n namespaces

 		
 Package Makefile cleanup

 		
 Site checker

 		
 batman-adv multicast optimizations

 		
 Known issues

 		
 Gluon 2017.1.8

 		
 Added hardware support

 		
 ar71xx-generic

 		
 ar71xx-tiny

 		
 Bugfixes

 		
 Other changes

 		
 Known issues

 		
 Gluon 2017.1.7

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.6

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.5

 		
 Added hardware support

 		
 ar71xx-generic

 		
 ramips-mt7621

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.4

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.3

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.2

 		
 New features

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1.1

 		
 Bugfixes

 		
 Known issues

 		
 Gluon 2017.1

 		
 General changes

 		
 Added hardware support

 		
 ar71xx-generic

 		
 ar71xx-tiny

 		
 x86-generic

 		
 x86-geode

 		
 New features

 		
 Bugfixes

 		
 Site changes

 		
 site.mk

 		
 site.conf

 		
 i18n

 		
 Internals

 		
 Known issues

 		
 Gluon 2016.2.7

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.2.6

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.2.5

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.2.4

 		
 Bugfixes

 		
 Other changes

 		
 Known Issues

 		
 Gluon 2016.2.3

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Removed hardware support

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.2.2

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Other changes

 		
 Known Issues

 		
 Gluon 2016.2.1

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.2

 		
 Added hardware support

 		
 ar71xx-generic

 		
 brcm2708-bcm2708

 		
 brcm2708-bcm2709

 		
 New features

 		
 Bugfixes

 		
 Other changes

 		
 Site changes

 		
 site.mk

 		
 i18n

 		
 Internals

 		
 Known Issues

 		
 Gluon 2016.1.6

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.1.5

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.1.4

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.1.3

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.1.2

 		
 Added hardware support

 		
 Bugfixes

 		
 Known Issues

 		
 Gluon 2016.1.1

 		
 Added hardware support

 		
 ar71xx-generic

 		
 Bugfixes

 		
 Build

 		
 AirOS 5.6.x compatiblity

 		
 Status page

 		
 Config mode

 		
 Failsafe mode

 		
 Known Issues

 		
 Gluon 2016.1

 		
 Added hardware support

 		
 ar71xx-generic

 		
 x86-xen_domu

 		
 x86-64

 		
 New features

 		
 Kernel module opkg repository

 		
 New status page

 		
 802.11s mesh support

 		
 Multicast filter extension

 		
 French translation

 		
 Bugfixes

 		
 Site changes

 		
 Internals

 		
 Known Issues

 		
 Gluon 2015.1.2

 		
 Added hardware support

 		
 ar71xx-generic

 		
 New features

 		
 Bugfixes

 		
 Gluon 2015.1.1

 		
 Added hardware support

 		
 ar71xx-generic

 		
 New features

 		
 Bugfixes

 		
 Gluon 2015.1

 		
 Added hardware support

 		
 ar71xx-generic

 		
 ar71xx-nand

 		
 mpc85xx-generic

 		
 x86-generic

 		
 x86-kvm_guest

 		
 New features

 		
 Multilingual config mode

 		
 Mesh-on-LAN

 		
 Extended WLAN configuration

 		
 fastd â��performance modeâ��

 		
 Altitude setting in gluon-config-mode-geo-location

 		
 gluon-announced rework

 		
 Nested peer groups

 		
 Autoupdater manual branch override

 		
 Bugfixes

 		
 Accidental factory reset fix

 		
 WAN IPv6 issues

 		
 WDR4900 WAN MAC address

 		
 Site changes

 		
 Internals

 		
 New upgrade script directory

 		
 Merged package repository

 		
 Known Issues

 		
 Alfred/respondd crashes

 		
 Ignored TX power offset on Ubiquiti AirMax devices

 		
 Gluon 2014.4

 		
 Added (and removed) hardware support

 		
 New features

 		
 OpenWrt Barrier Breaker

 		
 Modular config mode

 		
 Experimental support for batman-adv compat 15

 		
 fastd v16

 		
 Private WLAN

 		
 Embedding SSH keys

 		
 Status page resolves nodenames

 		
 Bugfixes

 		
 Site changes

 		
 Internals

 		
 Known Issues

 		
 Alfred crashes

 		
 Out of memory / batman-adv memory leaks

 		
 Ignored tx-power offset on Ubiquiti AirMax devices

 		
 Gluon 2014.3.1

 		
 Bugfixes

 		
 New features

 		
 Site changes

 		
 Gluon 2014.3

 		
 New hardware support

 		
 New features

 		
 New autoupdater

 		
 Seperation of announced data

 		
 gluon-announced

 		
 VPN over IPv6

 		
 More modular Config Mode

 		
 Extended Expert Mode

 		
 Site validators

 		
 gluon-firewall

 		
 gluon-ath9k-workaround

 		
 Bugfixes

 		
 Improved ath9k stability

 		
 odhcp6c 50 day bug

 		
 IPv6 preference

 		
 Site changes

 		
 Internals

_images/mtu-diagram_v5.png
Ethernet header
14 Byte
s 1Pv4 header _
:a 20Byte IPV6 header g
£ 40Byte <
g g
2z UDP header]
] 8Byt © L fastd
13- g overhead
58 5
= fastd header (9 Assumption: Clients
S 24Byte Py should be able to work
5% z with a MTU of 1280 Byte
55 Ethernet header (only in fastd TAP mode) | without fragmentation
cs 14 Byte
£ =
e3 batman-adv unicast | batman-adv unicast
58 (14 Byte (compat 14) J | 18 Byte (compat 15) batman-adv
min. MTU of ¥a & header
d 3¢ < Ethemet header
XDSL line
ee g 14 Byte.
e 1Pv4 header
= 20 Byte IP:% réeader
o — yte
fastd |2 TCP header UD: ;‘;fe’
MU § 2L UDP head
z TCP header e 2
LN 20 Byte & MTU usable
8 8 [fordlents
e &
2 UDP Payload
@ | TCP Segment
8 1240 Byte 1252 Byte TCP Segment e
e 1220 Byte.

_images/multidomain_configmode.gif
Here you have the possibility of selecting the domain in which your node is placed. Please keep in mind that your router only
connects with the mesh of the selected domain

—]
Darmstadt: Am Oberfeld

Your internet connection can be used to establish @ Darmstadt: Am Stidbahnhof Jption if there are no other nodes
reachable over WLAN in your vicinity or you wantto 1 Darmstadt: An den Lichtwiesen ailable for the network. You can
limithow much bandwidth the node will use atmost.| - o i an der Ludwigshohe
Darmstadt: Biirgerparkviertel
Use Internet connection (mesh vpy) | DTSt Hemstatensiedlung
Darmstadt: Hochschulviertel
Limit bandwidth | Darmstadt: Johannesviertel
Darmstadt: Kapellplatzviertel

Darmstadt: Lincoln-Siedlung
If you want the location of your node to be displayed ¢

optional and should only be done if a proper value is

'Specifying the altitude is

Darmstadt: Martins

Darmstad: Mathildenhihe
Darmstadt: Mollerstadt

Show node on the map | Darmstadt: Mornewegviertel
Darmstad: Pallaswiesenviertel

Darmstadt: Paulusviertel
Please provide your contact information here to allow n will be visible publicly on the

; . . Darmstadt: St. Ludwig mit Eichbergviertel
intemet together with your node's coordinates.
Darmstadt: Stadtzenrum

Darmstad: Verlegerviertel

Contactinfo |Darmstadt: Waldkoloni l

.. E-mailor phone number

_images/fastd_mode.gif
Information Remote access WLAN Private WLAN Network Mesh VPN Automatic updates Upgrade firmware

Mesh VPN

Security mode
In security mode, the mesh VPN uses an encrypted tunnel to connectto the VPN servers. The
encryption ensures that it is impossible for your intemet access provider to see what data is
exchanged over your node.

Performance mode
In performance mode, no encryption is used. This usually allows for higher throughput, but the

data exchanged over your node s not protected against eavesdropping.
=]

